Skip to main content

Replacing Method for Multi-Agent Crowd Simulation by Convolutional Neural Network

  • Conference paper
  • First Online:
Multi-Agent-Based Simulation XXIII (MABS 2022)

Abstract

Multi-agent crowd simulations are used to analyze crowd flows. However, there is a critical problem that the computational time increases with the number of agents because these simulations are based on the interaction of the agents. The approach of using deep neural networks is effective in some applications, such as fluid dynamics simulations. We propose a method of using convolutional neural networks to estimate simulation results from the conditions of each agent and the initial arrangement of a crowd. We evaluated our proposed method through evacuation simulation and demonstrated that our proposed method could obtain evacuation simulation results with high speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Balmer, M., Cetin, N., Nagel, K., Raney, B.: Towards truly agent-based traffic and mobility simulations. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004, pp. 60–67. IEEE (2004)

    Google Scholar 

  3. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  4. Endo, K., Tomobe, K., Yasuoka, K.: Multi-step time series generator for molecular dynamics. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  5. Feng, Y., Duives, D., Daamen, W., Hoogendoorn, S.: Data collection methods for studying pedestrian behaviour: a systematic review. Build. Environ. 187, 107329 (2021)

    Article  Google Scholar 

  6. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: International Conference on Machine Learning, pp. 1243–1252. PMLR (2017)

    Google Scholar 

  7. Gianni, D., Loukas, G., Gelenbe, E., et al.: A simulation framework for the investigation of adaptive behaviours in largely populated building evacuation scenarios. In: Proceedings of the Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 08), Estoril, Portugal, vol. 1216. Citeseer (2008)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hoogendoorn, S.P., Bovy, P.H.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. Part B: Methodol. 38(2), 169–190 (2004)

    Article  Google Scholar 

  10. Jiang, R., et al.: Deepurbanevent: a system for predicting citywide crowd dynamics at big events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2114–2122 (2019)

    Google Scholar 

  11. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118(21), e2101784118 (2021)

    Article  MathSciNet  Google Scholar 

  12. Lämmel, G., Rieser, M., Nagel, K.: Bottlenecks and congestion in evacuation scenarios: A microscopic evacuation simulation for large-scale disasters. In: Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal (2008)

    Google Scholar 

  13. Liang, Y., et al.: Urbanfm: inferring fine-grained urban flows. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3132–3142 (2019)

    Google Scholar 

  14. Oord, A., et al.: Parallel wavenet: fast high-fidelity speech synthesis. In: International Conference on Machine Learning, pp. 3918–3926. PMLR (2018)

    Google Scholar 

  15. Paruchuri, P., Pullalarevu, A.R., Karlapalem, K.: Multi agent simulation of unorganized traffic. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 1, pp. 176–183 (2002)

    Google Scholar 

  16. Rasouli, A.: Pedestrian simulation: A review. arXiv preprint arXiv:2102.03289 (2021)

  17. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  18. Sharma, S.: Avatarsim: a multi-agent system for emergency evacuation simulation. J. Comput. Meth. Sci. Eng. 9(s1), S13–S22 (2009)

    Google Scholar 

  19. Sharma, S., Singh, H., Prakash, A.: Multi-agent modeling and simulation of human behavior in aircraft evacuations. IEEE Trans. Aerosp. Electron. Syst. 44(4), 1477–1488 (2008)

    Article  Google Scholar 

  20. Sharon, G., et al.: Real-time adaptive tolling scheme for optimized social welfare in traffic networks. In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2017) (2017)

    Google Scholar 

  21. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  22. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Singh, A.J., Nguyen, D.T., Kumar, A., Lau, H.C.: Multiagent decision making for maritime traffic management. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6171–6178 (2019)

    Google Scholar 

  25. Takeuchi, K., Nishida, R., Kashima, H., Onishi, M.: Grab the reins of crowds: Estimating the effects of crowd movement guidance using causal inference. arXiv preprint arXiv:2102.03980 (2021)

  26. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating eulerian fluid simulation with convolutional networks. In: International Conference on Machine Learning, pp. 3424–3433. PMLR (2017)

    Google Scholar 

  27. Tsai, J., et al.: ESCAPES: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: AAMAS, vol. 11, pp. 457–464 (2011)

    Google Scholar 

  28. Uno, K., Kashiyama, K.: Development of simulation system for the disaster evacuation based on multi-agent model using GIS. Tsinghua Sci. Technol. 13(S1), 348–353 (2008)

    Article  Google Scholar 

  29. Yamashita, T., Okada, T., Noda, I.: Implementation of simulation environment for exhaustive analysis of huge-scale pedestrian flow. SICE J. Control Meas. Syst. Integr. 6(2), 137–146 (2013)

    Article  Google Scholar 

  30. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  31. Zhou, M., Dong, H., Ioannou, P.A., Zhao, Y., Wang, F.Y.: Guided crowd evacuation: approaches and challenges. IEEE/CAA J. Automatica Sinica 6(5), 1081–1094 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamashita, Y., Takami, S., Shigenaka, S., Onishi, M., Morishima, A. (2023). Replacing Method for Multi-Agent Crowd Simulation by Convolutional Neural Network. In: Lorig, F., Norling, E. (eds) Multi-Agent-Based Simulation XXIII. MABS 2022. Lecture Notes in Computer Science(), vol 13743. Springer, Cham. https://doi.org/10.1007/978-3-031-22947-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22947-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22946-6

  • Online ISBN: 978-3-031-22947-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics