Skip to main content

Compact FE for Unbounded Attribute-Weighted Sums for Logspace from SXDH

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

This paper presents the first functional encryption \((\textsf{FE})\) scheme for the attribute-weighted sum \((\textsf{AWS})\) functionality that supports the uniform model of computation. In such an \(\textsf{FE}\) scheme, encryption takes as input a pair of attributes (xz) where the attribute x is public while the attribute z is private. A secret key corresponds to some weight function f, and decryption recovers the weighted sum f(x)z. This is an important functionality with a wide range of potential real life applications, many of which require the attribute lengths to be flexible rather than being fixed at system setup. In the proposed scheme, the public attributes are considered as binary strings while the private attributes are considered as vectors over some finite field, both having arbitrary polynomial lengths that are not fixed at system setup. The weight functions are modelled as Logspace Turing machines.

Prior schemes [Abdalla, Gong, and Wee, CRYPTO 2020 and Datta and Pal, ASIACRYPT 2021] could only support non-uniform Logspace. The proposed scheme is built in asymmetric prime-order bilinear groups and is proven adaptively simulation secure under the well-studied symmetric external Diffie-Hellman (\(\textsf{SXDH}\)) assumption against an arbitrary polynomial number of secret key queries both before and after the challenge ciphertext. This is the best possible level of security for \(\textsf{FE}\) as noted in the literature. As a special case of the proposed FE scheme, we also obtain the first adaptively simulation secure inner-product FE (\(\textsf{IPFE}\)) for vectors of arbitrary length that is not fixed at system setup.

On the technical side, our contributions lie in extending the techniques of Lin and Luo [EUROCRYPT 2020] devised for payload hiding attribute-based encryption (ABE) for uniform Logspace access policies avoiding the so-called “one-use” restriction in the indistinguishability-based security model as well as the “three-slot reduction” technique for simulation-secure attribute-hiding FE for non-uniform Logspace devised by Datta and Pal [ASIACRYPT 2021] to the context of simulation-secure attribute-hiding FE for uniform Logspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The usual simulation-based security considered in previous works [13, 14] follows from the piecewise security of \(\textsf{AKGS}\).

  2. 2.

    For simplicity of notations, we enumerate the states of each \(M_k\) as \(1, \dots , q\), i.e., \([Q_k] = [Q]\) for some \(Q \in \mathbb {N}\).

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums from k-Lin. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 685–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_23

    Chapter  Google Scholar 

  3. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_2

    Chapter  Google Scholar 

  4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  5. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: FOCS 2011, pp. 120–129. IEEE Computer Society (2011)

    Google Scholar 

  6. Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_20

    Chapter  MATH  Google Scholar 

  7. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  9. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  10. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  11. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  12. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 640–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_22

    Chapter  Google Scholar 

  13. Datta, P., Pal, T.: (Compact) adaptively Secure FE for attribute-weighted sums from k-Lin. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 434–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_15

    Chapter  Google Scholar 

  14. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_54

    Chapter  MATH  Google Scholar 

  15. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  16. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  17. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30

    Chapter  Google Scholar 

  18. Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: beyond \(\sf NC^1\) and towards \(\sf NL\). In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9

    Chapter  Google Scholar 

  19. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: FOCS 2016, pp. 11–20. IEEE (2016)

    Google Scholar 

  20. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  21. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  22. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556 (2010)

    Google Scholar 

  23. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. Jpn. J. Ind. Appl. Math. 37(3), 723–779 (2020). https://doi.org/10.1007/s13160-020-00419-x

    Article  MATH  Google Scholar 

  24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  25. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_26

    Chapter  Google Scholar 

  26. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratish Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, P., Pal, T., Takashima, K. (2022). Compact FE for Unbounded Attribute-Weighted Sums for Logspace from SXDH. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13791. Springer, Cham. https://doi.org/10.1007/978-3-031-22963-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22963-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22962-6

  • Online ISBN: 978-3-031-22963-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics