Skip to main content

On the Field-Based Division Property: Applications to MiMC, Feistel MiMC and GMiMC

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13793))

Abstract

Recent practical applications using advanced cryptographic protocols such as multi-party computations (MPC) and zero-knowledge proofs (ZKP) have prompted a range of novel symmetric primitives described over large finite fields, characterized as arithmetization-oriented (AO) ciphers. Such designs, aiming to minimize the number of multiplications over fields, have a high risk of being vulnerable to algebraic attacks, especially to the higher-order differential attack. Thus, it is significant to carefully evaluate the growth of their algebraic degree. However, the degree estimation for AO ciphers has been a challenge for cryptanalysts due to the lack of general and accurate methods.

In this paper, we extend the division property, a state-of-the-art framework for finding the upper bound of the algebraic degree over binary fields, to the scope of \(\mathbb {F}_{2^n}\). It is a generic method to detect the algebraic degree for AO ciphers, even applicable to Feistel ciphers which have no better bounds than the trivial exponential one. In this general division property, our idea is to evaluate whether the polynomial representation of a block cipher contains some specific monomials. With a deep investigation of the arithmetical feature, we introduce the propagation rules of monomials for field-based operations, which can be efficiently modeled using the bit-vector theory of SMT. Then the new searching tool for degree estimation can be constructed due to the relationship between the algebraic degree and the exponents of monomials.

We apply our new framework to some important AO ciphers, including Feistel MiMC, GMiMC, and MiMC. For Feistel MiMC, we show that the algebraic degree grows significantly slower than the native exponential bound. For the first time, we present a secret-key higher-order differential distinguisher for up to 124 rounds, much better than the 83-round distinguisher for Feistel MiMC permutation proposed at CRYPTO 2020. We also exhibit a full-round zero-sum distinguisher with a data complexity of \(2^{251}\). Our method can be further extended for the general Feistel structure with more branches and exhibit higher-order differential distinguishers against the practical instance of GMiMC for up to 50 rounds. For MiMC in SP-networks, our results correspond to the exact algebraic degree proved by Bouvier et al. We also point out that the number of rounds in MiMC’s specification is not sufficient to guarantee the security against the higher-order differential attack for MiMC-like schemes with different exponents. The investigation of different exponents provides some guidance on the cipher design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [14] also gives an improved bound when \(d\ne 3\). However, the cost for computing the Hamming weight is exponential in r, which means that the bound is infeasible to be determined computationally.

References

  1. https://eprint.iacr.org/2022/1210.pdf

  2. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8

    Chapter  Google Scholar 

  3. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symmetric Cryptol. 2020(3), 1–45 (2020)

    Article  Google Scholar 

  5. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi. Rump Session Cryptographic Hardware Embed. Syst.-CHES 2009, 67 (2009)

    Google Scholar 

  6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 825–885. IOS Press (2009)

    Google Scholar 

  7. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_34

    Chapter  Google Scholar 

  8. Beyne, T., et al.: Out of oddity – new cryptanalytic techniques against symmetric primitives optimized for integrity proof systems. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_11

    Chapter  Google Scholar 

  9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1

    Chapter  Google Scholar 

  10. Boura, C., Canteaut, A.: On the influence of the algebraic degree of f\({}^{\text{-1 }}\) on the algebraic degree of G \(\circ \) F. IEEE Trans. Inf. Theory 59(1), 691–702 (2013)

    Article  MATH  Google Scholar 

  11. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_24

    Chapter  Google Scholar 

  12. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

    Chapter  Google Scholar 

  13. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

    Article  Google Scholar 

  14. Bouvier, C., Canteaut, A., Perrin, L.: On the algebraic degree of iterated power functions. Cryptology ePrint Archive, Report 2022/366 (2022) https://ia.cr/2022/366

  15. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_34

    Chapter  Google Scholar 

  16. Carlet, C., Charpin, P., Zinoviev, V.A.: Codes, bent functions and permutations suitable for des-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)

    Article  MATH  Google Scholar 

  17. Chen, S., Xiang, Z., Zeng, X., Zhang, S.: On the relationships between different methods for degree evaluation. IACR Trans. Symmetric Cryptol. 2021(1), 411–442 (2021)

    Article  Google Scholar 

  18. Cid, C., Grassi, L., Gunsing, A., Lüftenegger, R., Rechberger, C., Schofnegger, M.: Influence of the linear layer on the algebraic degree in sp-networks. IACR Trans. Symmetric Cryptol. 2022(1), 110–137 (2022)

    Article  Google Scholar 

  19. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, vol. 1971, pp. 151–158. ACM (1971)

    Google Scholar 

  20. Derbez, P., Fouque, P.: Increasing precision of division property. IACR Trans. Symmetric Cryptol. 2020(4), 173–194 (2020)

    Article  Google Scholar 

  21. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryption based on Toffoli-Gates over large finite fields. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_1

    Chapter  Google Scholar 

  22. Eichlseder, M., et al.: An algebraic attack on ciphers with low-degree round functions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_16

    Chapter  Google Scholar 

  23. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_52

    Chapter  Google Scholar 

  24. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a generalization of substitution-permutation networks: the hades design strategy. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_23

    Chapter  Google Scholar 

  25. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17

    Chapter  Google Scholar 

  26. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_18

    Chapter  Google Scholar 

  27. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division property: revisiting degree evaluations, cube attacks, and key-independent sums. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

    Chapter  Google Scholar 

  28. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_19

    Chapter  Google Scholar 

  29. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications and Cryptography, pp. 227–233. Springer, Boston (1994)

    Google Scholar 

  30. Lambin, B., Derbez, P., Fouque, P.: Linearly equivalent s-boxes and the division property. Des. Codes Cryptogr. 88(10), 2207–2231 (2020). https://doi.org/10.1007/s10623-020-00773-4

    Article  MATH  Google Scholar 

  31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  32. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

    Chapter  Google Scholar 

  33. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5

    Chapter  Google Scholar 

  34. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  35. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  36. Udovenko, A.: Convexity of division property transitions: theory, algorithms and compact models. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 332–361. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_12

    Chapter  Google Scholar 

  37. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching division property using three subsets and applications. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_14

    Chapter  Google Scholar 

  38. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments. This work is supported by the National Natural Science Foundation of China (Grant No. 62032014), the National Key Research and Development Program of China (Grant No. 2018YFA0704702), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025). Kai Hu is supported by the “ANR-NRF project SELECT". Puwen Wei is supported by the Shandong Provincial Natural Science Foundation (No. ZR2020MF053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, J., Hu, K., Wang, M., Wei, P. (2022). On the Field-Based Division Property: Applications to MiMC, Feistel MiMC and GMiMC. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13793. Springer, Cham. https://doi.org/10.1007/978-3-031-22969-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22969-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22968-8

  • Online ISBN: 978-3-031-22969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics