Abstract
We propose the signature scheme Hawk, a concrete instantiation of proposals to use the Lattice Isomorphism Problem (LIP) as a foundation for cryptography that focuses on simplicity. This simplicity stems from LIP, which allows the use of lattices such as \(\mathbb Z^n\), leading to signature algorithms with no floats, no rejection sampling, and compact precomputed distributions. Such design features are desirable for constrained devices, and when computing signatures inside FHE or MPC. The most significant change from recent LIP proposals is the use of module lattices, reusing algorithms and ideas from NTRUSign and Falcon. Its simplicity makes Hawk competitive. We provide cryptanalysis with experimental evidence for the design of Hawk and implement two parameter sets, Hawk-512 and Hawk-1024. Signing using Hawk-512 and Hawk-1024 is four times faster than Falcon on x86 architectures, produces signatures that are about 15% more compact, and is slightly more secure against forgeries by lattice reduction attacks. When floating-points are unavailable, Hawk signs 15 times faster than Falcon.
We provide a worst case to average case reduction for module LIP. For certain parametrisations of Hawk this applies to secret key recovery and we reduce signature forgery in the random oracle model to a new problem called the one more short vector problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
See fail_and_forge_probability at https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage.
- 5.
- 6.
See fail_and_forge_probabilities at https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage.
References
Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Practical, round-optimal lattice-based blind signatures. Cryptology ePrint Archive, Paper 2021/1565 (2021). https://eprint.iacr.org/2021/1565
Agrawal, S., Stehle, D., Yadav, A.: Round-optimal lattice-based threshold signatures, revisited. Cryptology ePrint Archive, Paper 2022/634 (2022). https://eprint.iacr.org/2022/634
Albrecht, M.R., Ducas, L.: Lattice Attacks on NTRU and LWE: A History of Refinements, pp. 15–40. London Mathematical Society Lecture Note Series, Cambridge University Press (2021). https://doi.org/10.1017/9781108854207.004
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head concavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_13
Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)
Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how hard are rotations of \(\mathbb{{Z}}^n\)? algorithms and cryptography with the simplest lattice. Cryptology ePrint Archive, Report 2021/1548 (2021). https://eprint.iacr.org/2021/1548
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J., (eds.) 45th ACM STOC, pp. 575–584. ACM Press (2013). https://doi.org/10.1145/2488608.2488680
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_26
Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27
Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Association for Computing Machinery, New York, NY, USA, pp. 191–198 (2016). https://doi.org/10.1145/2930889.2930923
Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 643–673. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_23
Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module LIP makes lattice signatures fast, compact and simple. Cryptology ePrint Archive, Paper 2022/1155 (2022). https://eprint.iacr.org/2022/1155
Espitau, T., et al.: Mitaka: a simpler, parallelizable, maskable variant of falcon. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 222–253. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_9
Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C., (eds.) 40th ACM STOC, pp. 197–206. ACM Press (2008). https://doi.org/10.1145/1374376.1374407
Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20
Golomb, S.: Run-length encodings (corresp.). IEEE Trans. Inf. Theory 12(3), 399–401 (1966). https://doi.org/10.1109/TIT.1966.1053907
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9
Kirchner, P.: Algorithms on ideal over complex multiplication order. Cryptology ePrint Archive, Report 2016/220 (2016). https://eprint.iacr.org/2016/220
Lenstra, H.W., Silverberg, A.: Lattices with symmetry. J. Cryptol. 30(3), 760–804 (2016). https://doi.org/10.1007/s00145-016-9235-7
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). https://doi.org/10.1137/S0097539705447360
Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. J. Cryptol. 22(2), 139–160 (2008). https://doi.org/10.1007/s00145-008-9031-0
Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5
Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 504–533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_17
Postlethwaite, E.W., Virdia, F.: On the success probability of solving unique SVP via BKZ. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 68–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_4
Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, Ecole normale supérieure-ENS PARIS (2015)
Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_27
T.F. development team: fpylll, a Python wraper for the fplll lattice reduction library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll
Acknowledgments
The authors thank Nick Genise, Shane Gibbons, Thomas Prest, Noah Stephens-Davidowitz and the anonymous reviewers for helpful discussions and useful feedback. W. van Woerden was supported by the ERC-ADG-ALGSTRONGCRYPTO project (no. 740972). The research of L. Ducas and E.W. Postlethwaite was supported by the European Union’s H2020 Programme under PROMETHEUS project (grant 780701). L. Ducas and L.N. Pulles were supported by the ERC-StG-ARTICULATE project (no. 947821).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Ducas, L., Postlethwaite, E.W., Pulles, L.N., Woerden, W.v. (2022). Hawk: Module LIP Makes Lattice Signatures Fast, Compact and Simple. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13794. Springer, Cham. https://doi.org/10.1007/978-3-031-22972-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-22972-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22971-8
Online ISBN: 978-3-031-22972-5
eBook Packages: Computer ScienceComputer Science (R0)