Skip to main content

BLOOM: Bimodal Lattice One-out-of-Many Proofs and Applications

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Abstract

We give a construction of an efficient one-out-of-many proof system, in which a prover shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems. The construction employs the recent zero-knowledge framework of Lyubashevsky et al. (Crypto 2022) together with an improved, over prior lattice-based one-out-of-many proofs, recursive procedure, and a novel rejection sampling proof that allows to use the efficient bimodal rejection sampling throughout the protocol.

Using these new primitives and techniques, we give instantiations of the most compact lattice-based ring and group signatures schemes. The improvement in signature sizes over prior works ranges between \(25\%\) and 2X. Perhaps of even more significance, the size of the user public keys, which need to be stored somewhere publicly accessible in order for ring signatures to be meaningful, is reduced by factors ranging from 7X to 15X. In what could be of independent interest, we also provide noticeably improved proofs for integer relations which, together with one-out-of-many proofs are key components of confidential payment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original formal definition of a one-out-of-many proof from [GK15] is more restricted in that \(A\vec s\) is a commitment to 0 rather than just an evaluation of a one-way function on \(\vec s\). But we do not need to restrict to this definition in this work.

  2. 2.

    Being able to prove quadratic relations, of course also allows one to prove that the \(\ell _2\)-norm of \(\vec s\) is smaller than some bound.

  3. 3.

    This only proves that \(\vec v\) is either a unit vector or a negative unit vector. But this is fine because proving knowledge of \(\vec v,\vec s\) satisfying \(\pm T\vec v=A\vec s\) is equivalent to (1).

  4. 4.

    One might be tempted to put the secret message into the \(\textbf{m}\) part of the commitment, which does not leak even if there is leakage in \(\textbf{s}_2\), but this results in a much less efficient commitment scheme because the dimension of the commitment grows linearly with the dimension of \(\textbf{m}\), whereas \(\textbf{s}_1\) has no effect on the size of the commitment. See Sect. 2.6.

  5. 5.

    If we want to prove that \(\Vert \vec s\Vert \leqslant \beta \), then we could create another commitment to a vector \(\vec s'\in \mathcal {R}_q\) such that \(\Vert \vec s\Vert ^2+\Vert \vec s'\Vert ^2=\beta ^2\) – the existence of such an \(\vec s'\) is guaranteed by the four squares theorem.

  6. 6.

    It is of course possible to reduce the public key size of any scheme by hashing it as \(\textsf{pk}'=H(\textsf{pk})\) for some cryptographic hash function H with the resulting \(\textsf{pk}'\) being as small as 32 bytes. This technique is fine for regular signatures, where one can reveal \(\textsf{pk}\) as part of the signature; but ring signatures will require a zero-knowledge proof that \(\textsf{pk}'=H(\textsf{pk})\), which will make the signatures orders of magnitude larger and slower.

  7. 7.

    If we make p too small, then the signature size will increase because a smaller p requires more “garbage terms” in the zero-knowledge proof to increase soundness. In our parameter settings, we chose a particular compromise between the public key size and signature size, but one could make the public key size even smaller at the expense of a few extra kilobytes in the signature size.

  8. 8.

    Message \(\textbf{m}\) does not need to be included in the opening since it can be deterministically computed from \(\textbf{t}_B\) and \(\textbf{s}_2\).

  9. 9.

    Proving that b is a sign has already been covered in [LNP22, Section 5.1].

  10. 10.

    Alternatively, \(u_i \in \{1,X,X^2,\ldots ,X^{\mathfrak {d}-1}\}\).

References

  1. Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round interactive proofs. Cryptology ePrint Archive, Paper 2021/1377 (2021). https://eprint.iacr.org/2021/1377

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)

    Google Scholar 

  3. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_17

    Chapter  Google Scholar 

  4. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_20

    Chapter  Google Scholar 

  5. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR. Cryptology ePrint Archive, Report 2016/589 (2016). https://ia.cr/2016/589

  6. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296(1), 625–635 (1993)

    Article  MATH  Google Scholar 

  7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_13

    Chapter  Google Scholar 

  8. Buser, M., et al.: A survey on exotic signatures for post-quantum blockchain: challenges & research directions. Cryptology ePrint Archive, Paper 2022/1151 (2022). https://eprint.iacr.org/2022/1151

  9. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.-F., Pintore, F.: Group signatures and more from isogenies and lattices: generic, simple, and efficient. IACR Cryptology ePrint Archive, p. 1366 (2021)

    Google Scholar 

  10. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  11. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_21

    Chapter  Google Scholar 

  12. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_16

    Chapter  Google Scholar 

  13. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7

    Chapter  Google Scholar 

  14. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information: attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12

    Chapter  Google Scholar 

  15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  16. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_22

    Chapter  Google Scholar 

  17. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    Chapter  Google Scholar 

  18. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: ISSAC, pp. 191–198 (2016)

    Google Scholar 

  19. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9

    Chapter  Google Scholar 

  20. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5

    Chapter  Google Scholar 

  21. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

    Chapter  MATH  Google Scholar 

  22. Esgin, M.F., Steinfeld, R., Zhao, R.K.: Matrict+: more efficient post-quantum private blockchain payments. IACR Cryptology ePrint Archive, p. 545 (2021)

    Google Scholar 

  23. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: Matrict: efficient, scalable and post-quantum blockchain confidential transactions protocol. In: CCS, pp. 567–584. ACM (2019)

    Google Scholar 

  24. Fouque, P.-A., et al.: Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Technical report (2020). https://falcon-sign.info/falcon.pdf

  25. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  26. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  28. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9

    Chapter  Google Scholar 

  29. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring signature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_6

    Chapter  Google Scholar 

  30. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_4

    Chapter  Google Scholar 

  31. Lyubashevsky, V., Nguyen, N.K., Plancon, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. Cryptology ePrint Archive, Paper 2022/284 (2022). https://eprint.iacr.org/2022/284. To appear at CRYPTO 2022

  32. Lyubashevsky, V., Nguyen, N.K., Plancon, M., Seiler, G.: Shorter lattice-based group signatures via “almost free’’ encryption and other optimizations. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 218–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_8

    Chapter  Google Scholar 

  33. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge proofs for integer relations. In: CCS, pp. 1051–1070. ACM (2020)

    Google Scholar 

  34. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_9

    Chapter  Google Scholar 

  35. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lattices with applications to ring signatures and confidential transactions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 611–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_21

    Chapter  Google Scholar 

  36. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8

    Chapter  Google Scholar 

  37. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2015)

    Article  MATH  Google Scholar 

  38. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  39. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  40. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)

    Google Scholar 

  41. Tao, Y., Wang, X., Zhang, R.: Short zero-knowledge proof of knowledge for lattice-based commitment. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 268–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_15

    Chapter  Google Scholar 

  42. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6

    Chapter  Google Scholar 

  43. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: generic construction of ring signatures with efficient instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_10

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for useful feedback. This work was conducted when the second author was at IBM Research Europe, and it was supported by the EU H2020 ERC Project 101002845 PLAZA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Khanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyubashevsky, V., Nguyen, N.K. (2022). BLOOM: Bimodal Lattice One-out-of-Many Proofs and Applications. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13794. Springer, Cham. https://doi.org/10.1007/978-3-031-22972-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22972-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22971-8

  • Online ISBN: 978-3-031-22972-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics