Skip to main content

A Derivative-Free Nonlinear Least Squares Solver

  • Conference paper
  • First Online:
Advances in Optimization and Applications (OPTIMA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1739))

Included in the following conference series:

  • 218 Accesses

Abstract

An improved version of derivative-free nonlinear least squares iterative solver developed earlier by the author is described. First, we apply a regularization technique to stabilize the evaluation of search directions similar to the one used in the Levenberg-Marquardt methods. Second, we propose several modified designs for the rectangular preconditioning matrix, in particular a sparse adaptive techniques avoiding the use of pseudorandom sequences. The resulting algorithm is based on easily parallelizable computational kernels such as dense matrix factorizations and elementary vector operations thus having a potential for an efficient implementation on modern high-performance computers. Numerical results are presented for several standard test problems as well as for some special complex-valued cases to demonstrate the effectiveness of the proposed improvements to method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Averick, B.M., Carter, R.G., Xue, G.L., More, J.J.: The MINPACK-2 test problem collection (No. ANL/MCS-TM-150-Rev.) Argonne National Lab., IL (United States) (1992)

    Google Scholar 

  3. Brown, P.N.: A local convergence theory for combined inexact-Newton/finite-difference projection methods. SIAM J. Numer. Anal. 24(2), 407–434 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4(2), 297–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaporin, I.E.: Esimating global convergence of inexact Newton methods via limiting stepsize along normalized direction, report 9329. Department of Mathematics, Catholic University of Nijmegen, Nijmegen, The Netherlands, p. 8 (1993)

    Google Scholar 

  7. Kaporin, I.E.: The use of preconditioned Krylov subspaces in conjugate gradient type methods for the solution of nonlinear least square problems (Russian). Vestnik Mosk. Univ. Ser. (Computational Math. Cybernetics) 15(3), 26–31 (1995)

    MATH  Google Scholar 

  8. Kaporin, I.E., Axelsson, O.: On a class of nonlinear equation solvers based on the residual norm reduction over a sequence of affine subspaces. SIAM J. Sci. Comput. 16(1), 228–249 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaporin, I.: Preconditioned subspace descent method for nonlinear systems of equations. Open Comput. Sci. 10(1), 71–81 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kaporin, I.: A derivative-free nonlinear least squares solver. In: Olenev, N.N., Evtushenko, Y.G., Jaćimović, M., Khachay, M., Malkova, V. (eds.) OPTIMA 2021. LNCS, vol. 13078, pp. 217–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91059-4_16

    Chapter  Google Scholar 

  11. Kazeev, V.A., Tyrtyshnikov, E.E.: Structure of the Hessian matrix and an economical implementation of Newton’s method in the problem of canonical approximation of tensors. Comput. Math. Math. Phys. 50(6), 927–945 (2010). https://doi.org/10.1134/S0965542510060011

    Article  MathSciNet  MATH  Google Scholar 

  12. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. Argonne National Laboratory, Applied Mathematics Division, Technical Memorandum No. 324, p. 96 (1978)

    Google Scholar 

  13. Northby, J.A.: Structure and binding of Lennard-Jones clusters: \(13\le N\le 147\). J. Chem. Phys. 87(10), 6166–6177 (1987)

    Article  Google Scholar 

  14. Oseledets, I.V., Savostyanov, D.V.: Minimization methods for approximating tensors and their comparison. Comput. Math. Math. Phys. 46(10), 1641–1650 (2006). https://doi.org/10.1134/S0965542506100022

    Article  MathSciNet  Google Scholar 

  15. Pan, V.Y., Qian, G.: Randomized preprocessing of homogeneous linear systems of equations. Linear Algebra Appl. 432, 3272–3318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sterck, H.D., Miller, K.: An adaptive algebraic multigrid algorithm for low-rank canonical tensor decomposition. SIAM J. Sci. Comput. 35(1), B1–B24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toint, P.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Math. Comput. 32(143), 839–851 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  19. Yu, L., Barbot, J.P., Zheng, G., Sun, H.: Compressive sensing with chaotic sequence. IEEE Sig. Process. Lett. 17(8), 731–734 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The author thanks the anonymous referee for insightful comments and suggestions which allow to significantly improve the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kaporin .

Editor information

Editors and Affiliations

A Limiting Stepsize Along Subnormalized Direction

A Limiting Stepsize Along Subnormalized Direction

Similar to [6, 9], the proof of (9) is based on the assumption that the limiting stepsize \(\widehat{\alpha }=\widehat{\alpha }(f,p)\) along a subnormalized direction p exists such that the limiting stepsize condition

$$\begin{aligned} \Vert f(x+\alpha p)-f-\alpha Jp\Vert \le \left( \alpha -\frac{\alpha ^2}{2}\right) \frac{\Vert Jp\Vert ^2}{\Vert f\Vert } \end{aligned}$$
(26)

is satisfied for all \(0<\alpha \le \widehat{\alpha }\). (To clarify the notations, further we will omit the iteration index t.) For instance, a sufficient condition for (26) to hold is that f satisfies the local Lipschitz condition at x and J(x) has full column rank, see, e.g., [9]. Indeed, (9) can be obtained from (26) and (8) as follows:

$$ \Vert f(x+\alpha p)\Vert \le \Vert f+\alpha Jp\Vert + \Vert f(x+\alpha p)-f-\alpha Jp\Vert $$
$$ = \left( \Vert f\Vert ^2+2\alpha f^{\top }Jp+\alpha ^2\Vert Jp\Vert ^2\right) ^{1/2} + \Vert f(x+\alpha p)-f-\alpha Jp\Vert $$
$$ \le \left( \Vert f\Vert ^2 - 2\alpha \Vert Jp\Vert ^2 + \alpha ^2\Vert Jp\Vert ^2\right) ^{1/2} + \left( \alpha -\frac{\alpha ^2}{2}\right) \frac{\Vert Jp\Vert ^2}{\Vert f\Vert } $$
$$ = \Vert f\Vert \left( \left( 1 - (2\alpha -\alpha ^2)\frac{\Vert Jp\Vert ^2}{\Vert f\Vert ^2}\right) ^{1/2} + \left( \alpha -\frac{\alpha ^2}{2}\right) \frac{\Vert Jp\Vert ^2}{\Vert f\Vert ^2}\right) $$
$$ \le \Vert f\Vert \left( 1 - \left( \left( \alpha -\frac{\alpha ^2}{2}\right) \frac{\Vert Jp\Vert ^2}{\Vert f\Vert ^2}\right) ^2\right) ^{1/2}, $$

where the latter estimate follows from the inequality

$$ \sqrt{1-\eta } + \frac{\eta }{2} \le \sqrt{1-\frac{\eta ^2}{4}}, $$

which holds for any \(0\le \eta \le 1\) and is used with \(\eta =\alpha (2-\alpha )\Vert Jp\Vert ^2/\Vert f\Vert ^2\), see also (11).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaporin, I. (2022). A Derivative-Free Nonlinear Least Squares Solver. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Advances in Optimization and Applications. OPTIMA 2022. Communications in Computer and Information Science, vol 1739. Springer, Cham. https://doi.org/10.1007/978-3-031-22990-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22990-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22989-3

  • Online ISBN: 978-3-031-22990-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics