Abstract
We consider the optimization problem of forming the fittest strategy for zooplankton diel vertical migration. This strategy should maximize the fitness function reflecting the average specific rate of population reproduction. We solve this problem using feedback between the current environmental state and the organism’s local movement. Such feedback reflects the ability of living organisms to adapt to changing habitat conditions. We construct the feedback on the base of the neural network. Its input is the values of environmental factors at a given point and a given time; its output is the corresponding local displacement of zooplankton. The initial optimization problem is reduced to the optimization of the feedback settings or to the optimal choice of the neural network weights. To train the neural network, we apply the new evolution method of stochastic global optimization: Survival of the Fittest by Differential Evolution (SoFDE), based on the Survival of the Fittest algorithm and Differential Evolution. It was shown that this approach permits to form the optimal behavioral strategy for different environmental conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Archibald, K.M., Siegel, D.A., Doney, S.C.: Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Global Biogeochem. Cycles 33(2), 181–199 (2019)
Arcifa, M.S., Perticarrari, A., Bunioto, T.C., Domingos, A.R., Minto, W.J.: Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes. Limnetica 35(2), 281–296 (2016)
Baioletti, M., Di Bari, G., Milani, A., Poggioni, V.: Differential evolution for neural networks optimization. Mathematics 8(1) (2020)
Birch, J.: Natural selection and the maximization of fitness. Biol. Rev. Camb. Philos. Soc. 91(3), 712–727 (2015)
Brest, J., Maucec, M.S., Bošković, B.: The 100-digit challenge: algorithm jDE100. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 19–26 (2019)
Buesseler, K.O., et al.: Revisiting carbon flux through the ocean’s twilight zone. Science 316(5824), 567–570 (2007)
Clark, C., Mangel, M.: Dynamic State Variable Models in Ecology. Oxford University Press (2000)
Danovaro, R., et al.: Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3 (2016)
Ducklow, H.W., Steinberg, D.K., Buesseler, K.O.: Upper ocean carbon export and the biological pump. Oceanography 14(4), 50–58 (2001)
Fiksen, O., Giske, J.: Vertical distribution and population dynamics of copepods by dynamic optimization. ICES J. Mar. Sci. 52, 483–503 (1995)
Gabriel, W., Thomas, B.: Vertical migration of zooplankton as an evolutionarily stable strategy. Am. Nat. 132(2), 199–216 (1988)
Gavrilets, S.: Fitness Landscapes and the Origin of Species (MPB-41). Princeton University Press, Princeton (2004)
Godø, O.R., et al.: Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scales on which they occur. ICES J. Mar. Sci. 71(8), 2357–2369 (2014)
Gorban, A.N.: Selection theorem for systems with inheritance. Math. Model. Nat. Phenom. 2(4), 1–45 (2007)
Guerra, D., et al.: Zooplankton diel vertical migration in the Corsica channel (North-Western Mediterranean sea) detected by a moored acoustic doppler current profiler. Ocean Sci. 15(3), 631–649 (2019)
Häfker, N.S., Meyer, B., Last, K.S., Pond, D.W., Hüppe, L., Teschke, M.: Circadian clock involvement in zooplankton diel vertical migration. Curr. Biol. 27(14), 2194–2201 (2017)
Hays, G.C.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503(1), 163–170 (2003)
Isla, A., Scharek, R., Latasa, M.: Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015)
Ismailov, V.E.: On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 417(2), 963–969 (2014)
Kaelo, P., Ali, M.M.: Some variants of the controlled random search algorithm for global optimization. J. Optim. Theory Appl. 130(2), 253–264 (2006)
Kaiser, M., et al.: Marine Ecology: Processes, Systems and Impacts. Oxford University Press, Oxford (2011)
Kuzenkov, O., Morozov, A.: Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness. Bull. Math. Biol. 81(11), 4675–4700 (2019)
Kuzenkov, O.A., Grishagin, V.A.: Global optimization in Hilbert space. In: AIP Conference Proceedings, vol. 1738, no. 1, p. 400007 (2016)
Lampert, W.: The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3(1), 21–27 (1989)
Lee, E.B., Lawrence, M.: Foundations of Optimal Control Theory (1967)
Lippmann, R.: An introduction to computing with neural nets. IEEE ASSP Mag. 4(2), 4–22 (1987)
Morozov, A., Kuzenkov, O.A., Arashkevich, E.G.: Modelling optimal behavioural strategies in structured populations using a novel theoretical framework. Sci. Rep. 9(1), 15020 (2019)
Morozov, A.Y., Kuzenkov, O.A.: Towards developing a general framework for modelling vertical migration in zooplankton. J. Theor. Biol. 405, 17–28 (2016)
Morozov, A.Y., Kuzenkov, O.A., Sandhu, S.K.: Global optimisation in Hilbert spaces using the survival of the fittest algorithm. Commun. Nonlinear Sci. Numer. Simul. 103, 106007 (2021)
Parvinen, K., Dieckmann, U., Heino, M.: Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol. 52(1), 1–26 (2006)
Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization (2005)
Price, W.L.: A controlled random search procedure for global optimisation. Comput. J. 20, 367–370 (1977)
Price, W.L.: Global optimization by controlled random search. J. Optim. Theory Appl. 40, 333–348 (1983)
Ringelberg, J.: Diel Vertical Migration of Zooplankton in Lakes and Oceans, pp. 1–9. Springer, Dordrecht (2010)
Santos, C., Gonçalves, M., Hernández Figueroa, H.E.: Designing novel photonic devices by bio-inspired computing. IEEE Photonics Technol. Lett. 22, 1177–1179 (2010)
Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms (2000)
He, X., Xu, S.: Feedback process neural networks. In: He, X., Xu, S. (eds.) Process Neural Networks, pp. 128–142. Springer, Cham (2010). https://doi.org/10.1007/978-3-540-73762-9_6
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Cham (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kuzenkov, O., Perov, D. (2022). Construction of Optimal Feedback for Zooplankton Diel Vertical Migration. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Advances in Optimization and Applications. OPTIMA 2022. Communications in Computer and Information Science, vol 1739. Springer, Cham. https://doi.org/10.1007/978-3-031-22990-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-22990-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22989-3
Online ISBN: 978-3-031-22990-9
eBook Packages: Computer ScienceComputer Science (R0)