Skip to main content

A Privacy-Preserving Distributed Machine Learning Protocol Based on Homomorphic Hash Authentication

  • Conference paper
  • First Online:
Network and System Security (NSS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13787))

Included in the following conference series:

  • 1090 Accesses

Abstract

Privacy-preserving machine learning is a hot topic in Artificial Intelligence (AI) area. However, there are also many security issues in all stages of privacy-oriented machine learning. This paper focuses on the dilemma that the privacy leakage of server-side parameter aggregation and external eavesdropper tampering during message transmission in the distributed machine learning framework. Combining with secret sharing techniques, we present a secure privacy-preserving distributed machine learning protocol under the double-server model based on homomorphic hash function, which enables our protocol verifiable. We also prove that our protocol can meet client semi-honest security requirements. Besides, we evaluate our protocol by comparing with other mainstream privacy preserving frameworks, in the aspects of computation, communication complexity analysis, in addition to a concrete implementation from the perspective of model convergence rate and execution time. Experimental results demonstrate that the local training model tends to converge at nearly 50 epochs where the convergence time is less than 400 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with (poly) logarithmic overhead. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1253–1269 (2020)

    Google Scholar 

  2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_22

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 351–371 (2019)

    Google Scholar 

  4. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_19

    Chapter  Google Scholar 

  5. Bonawitz, K., et al.: Practical secure aggregation for federated learning on user-held data. arXiv preprint arXiv:1611.04482 (2016)

  6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: privacy-preserving aggregation of multi-domain network events and statistics. Network 1(101101), 15–32 (2010)

    Google Scholar 

  8. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  9. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 (2017)

  10. Jürgen, S.: A homomorphism theorem for partial algebras. In: Colloquium Mathematicum, vol. 21, pp. 5–21. Institute of Mathematics Polish Academy of Sciences (1970)

    Google Scholar 

  11. Krohn, M.N., Freedman, M.J., Mazieres, D.: On-the-fly verification of rateless erasure codes for efficient content distribution. In: 2004 Proceedings of IEEE Symposium on Security and Privacy, pp. 226–240. IEEE (2004)

    Google Scholar 

  12. Liu, M., Jiang, H., Chen, J., Badokhon, A., Wei, X., Huang, M.C.: A collaborative privacy-preserving deep learning system in distributed mobile environment. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 192–197. IEEE (2016)

    Google Scholar 

  13. Mandal, K., Gong, G.: PriVFL: practical privacy-preserving federated regressions on high-dimensional data over mobile networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, pp. 57–68 (2019)

    Google Scholar 

  14. Mandal, K., Gong, G., Liu, C.: Nike-based fast privacy-preserving high dimensional data aggregation for mobile devices. Technical report, CACR Technical report, CACR 2018–10, University of Waterloo, Canada (2018)

    Google Scholar 

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  16. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep learning: stand-alone and federated learning under passive and active white-box inference attacks (2018)

    Google Scholar 

  17. Rabin, M.O.: How to exchange secrets with oblivious transfer (2005). http://eprint.iacr.org/2005/187 harvard University Technical Report 81 talr@watson.ibm.com 12955. Accessed 21 June 2005

  18. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 735–746 (2010)

    Google Scholar 

  19. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  22. So, J., Guler, B., Avestimehr, A.S.: Turbo-aggregate: breaking the quadratic aggregation barrier in secure federated learning. IEEE J. Sel. Area Inf. Theory. 2, 479–489 (2021)

    Article  Google Scholar 

  23. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  24. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y. et al. (2022). A Privacy-Preserving Distributed Machine Learning Protocol Based on Homomorphic Hash Authentication. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar, S. (eds) Network and System Security. NSS 2022. Lecture Notes in Computer Science, vol 13787. Springer, Cham. https://doi.org/10.1007/978-3-031-23020-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23020-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23019-6

  • Online ISBN: 978-3-031-23020-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics