Abstract
For an organization, insider intrusion generally poses far more detrimental threats than outsider intrusion. Traditionally, insider threat is detected by analyzing logged user behaviours and then establishing a binary classifier to distinguish malicious ones. However, most approaches consider user behaviour in an isolated manner, inevitably missing the background information from organizational connections such as a shared supervisor or e-mail interactions. Consequently, the performance of those existing works still has the potential to be enhanced. In this paper, we propose a bi-channel insider threat detection (B-CITD) framework enhanced by graph intelligence to improve the overall performance of existing methods. Firstly, We extract behavioural features from a series of log files as the inner-user channel features. Secondly, we construct an organizational connection graph and extract topological features through a graph neural networks (GNN) model as the inter-user channel features. In the end, the features from inner-user and inter-user channels are combined together to perform an insider threat detection task through a binary classification model. Experimental results on an open-sourced CERT 4.2 dataset show that B-CITD can enhance the performance of insider threat detection by a large margin, compared with using features only from inner-user or inter-user channels. We published our code on GitHub: https://github.com/Wayne-on-the-road/B-CITD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Accenture: State of cybersecurity resilience 2021. Accenture Official Website, 03 November 2021. https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence analysis. Commun. ACM 47(3), 45–47 (2004)
Gamachchi, A., Boztas, S.: Insider threat detection through attributed graph clustering. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 112–119. IEEE (2017)
Garg, A., Rahalkar, R., Upadhyaya, S., Kwiat, K.: Profiling users in GUI based systems for masquerade detection. In: Proceedings of the 2006 IEEE Workshop on Information Assurance, vol. 2006, pp. 48–54 (2006)
Gavai, G., Sricharan, K., Gunning, D., Rolleston, R., Hanley, J., Singhal, M.: Detecting insider threat from enterprise social and online activity data. In: Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats, pp. 13–20 (2015)
Glasser, J., Lindauer, B.: Bridging the gap: A pragmatic approach to generating insider threat data. In: 2013 IEEE Security and Privacy Workshops. pp. 98–104. IEEE (2013)
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)
Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., Ochoa, M.: Insight into insiders and it: a survey of insider threat taxonomies, analysis, modeling, and countermeasures. ACM Comput. Surv. (CSUR) 52(2), 1–40 (2019)
Jiang, J., et al.: Anomaly detection with graph convolutional networks for insider threat and fraud detection. In: MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM), pp. 109–114. IEEE (2019)
Kabir, M.E., Mahmood, A.N., Wang, H., Mustafa, A.K.: Microaggregation sorting framework for k-anonymity statistical disclosure control in cloud computing. IEEE Trans. Cloud Comput. 8(2), 408–417 (2015)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Li, M., Sun, X., Wang, H., Zhang, Y.: Multi-level delegations with trust management in access control systems. J. Intell. Inf. Syst. 39(3), 611–626 (2012)
Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., Meng, D.: Log2vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1777–1794 (2019)
Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command lines. In: Proceedings International Conference on Dependable Systems and Networks, pp. 219–228. IEEE (2002)
Miller, S.: 2017 u.s. state of cybercrime highlights. Carnegie Mellon University’s Software Engineering Institute Blog, 17 January 2018. http://insights.sei.cmu.edu/blog/2017-us-state-of-cybercrime-highlights/
Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J.: Automatic breast lesion segmentation in phase preserved dce-mris. Health Inf. Sci. Syst. 10 (2022). https://doi.org/10.1007/s13755-022-00176-w
Paul, S., Mishra, S.: Lac: LSTM autoencoder with community for insider threat detection. In: 2020 the 4th International Conference on Big Data Research (ICBDR 2020), pp. 71–77 (2020)
PwC: Cybercrime survey 2020. PwC Official Website, 28 August 2021. https://www.pwc.dk/da/publikationer/2021/cybercrime-survey-2020-en.html
Rasool, R., Ahmed, K., Anwar, Z., Wang, H., Ashraf, U., Rafiq, W.: Cyberpulse++: A machine learning based security framework for detecting link flooding attacks in software defined networks. International Journal of Intelligent Systems 2021, 1–28 (04 2021). https://doi.org/10.1002/int.22442
Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Wang, K.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. 9(4) (2021). https://doi.org/10.4108/eai.16-12-2021.172436
Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Computer intrusion: detecting masquerades. Stat. Sci. 16, 58–74 (2001)
Singh, R., Zhang, Y., Wang, H., Miao, Y., Ahmed, K.: Investigation of social behaviour patterns using location-based data - a melbourne case study. ICST Trans. Scalable Inf. Syst. 8, 166767 (2020). https://doi.org/10.4108/eai.26-10-2020.166767
Sun, L., Ma, J., Wang, H., Zhang, Y., Yong, J.: Cloud service description model: an extension of USDL for cloud services. IEEE Trans. Serv. Comput. 11(2), 354–368 (2015)
Sun, X., Li, M., Wang, H., Plank, A.: An efficient hash-based algorithm for minimal k-anonymity. In: Conferences in Research and Practice in Information Technology (CRPIT), vol. 74, pp. 101–107. Australian Computer Society Inc. (2008)
Sun, X., Wang, H., Li, J.: Satisfying privacy requirements: one step before anonymization. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6118, pp. 181–188. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13657-3_21
Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Disc. 23(3), 379–406 (2011)
Theis, M., et al.: Common sense guide to mitigating insider threats (2019)
Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning for unsupervised insider threat detection in structured cybersecurity data streams. arXiv preprint arXiv:1710.00811 (2017)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020)
Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access control. IEEE Trans. Knowl. Data Eng. 17(3), 425–436 (2005)
Wang, H., Zhang, Y., Cao, J.: Effective collaboration with information sharing in virtual universities. IEEE Trans. Knowl. Data Eng. 21(6), 840–853 (2008)
Wang, H., Zhang, Y., Cao, J., Varadharajan, V.: Achieving secure and flexible m-services through tickets. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 33(6), 697–708 (2003)
Wang, Y., Shen, Y., Wang, H., Cao, J., Jiang, X.: MTMR: ensuring mapreduce computation integrity with Merkle tree-based verifications. IEEE Trans. Big Data 4(3), 418–431 (2016)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graphics (tog) 38(5), 1–12 (2019)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
Yin, J., Tang, M., Cao, J., Wang, H., You, M.: A real-time dynamic concept adaptive learning algorithm for exploitability prediction. Neurocomputing 472, 252–265 (2022)
Yin, J., Tang, M., Cao, J., You, M., Wang, H., Alazab, M.: Knowledge-driven cybersecurity intelligence: software vulnerability co-exploitation behaviour discovery. IEEE Trans. Ind. Inform. (2022)
Yin, J., You, M., Cao, J., Wang, H., Tang, M.J., Ge, Y.-F.: Data-driven hierarchical neural network modeling for high-pressure feedwater heater group. In: Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp. 225–233. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_19
You, M., Yin, J., Wang, H., Cao, J., Miao, Y.: A minority class boosted framework for adaptive access control decision-making. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds.) WISE 2021. LNCS, vol. 13080, pp. 143–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90888-1_12
You, M., et al.: A knowledge graph empowered online learning framework for access control decision-making. World Wide Web, pp. 1–22 (2022)
Yuan, F., Cao, Y., Shang, Y., Liu, Y., Tan, J., Fang, B.: Insider threat detection with deep neural network. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10860, pp. 43–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93698-7_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, W. et al. (2022). Graph Intelligence Enhanced Bi-Channel Insider Threat Detection. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar, S. (eds) Network and System Security. NSS 2022. Lecture Notes in Computer Science, vol 13787. Springer, Cham. https://doi.org/10.1007/978-3-031-23020-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-23020-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23019-6
Online ISBN: 978-3-031-23020-2
eBook Packages: Computer ScienceComputer Science (R0)