Skip to main content

Discovering Respects for Visual Similarity

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2022)

Abstract

Similarity is a fundamental concept in artificial intelligence and cognitive sciences. Despite all the efforts made to study similarity, defining and measuring it between concepts or images remains challenging. Fortunately, measuring similarity is comparable to answering “why”/“in which respects” two stimuli are similar. While most related works done in computer sciences try to measure the similarity, we propose to analyze it from a different angle and retrospectively find such respects. In this paper, we provide a pipeline allowing us to find, for a given dataset of image pairs, what are the different concepts generally compared and why. As an indirect evaluation, we propose generating an automatic explanation of clusters of image pairs found using a model pre-trained on texts/images. An experimental study highlights encouraging results toward a better comprehension of visual similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rissland, E.: AI and similarity. IEEE Intell. Syst. 21, 39–49 (2006)

    Article  Google Scholar 

  2. Tversky, A., Gati, I.: Studies of similarity. In: Cognition and Categorization (1978)

    Google Scholar 

  3. Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. Am. Psychol. 52, 45–56 (1997)

    Article  Google Scholar 

  4. Tirilly, P., Mu, X., Huang, C., Xie, I., Jeong, W., Zhang, J.: On the consistency and features of image similarity. In: IIiX, pp. 164–173 (2012)

    Google Scholar 

  5. Liu, T., Cooper, L.A.: The influence of task requirements on priming in object decision and matching. Mem. Cognit. 29, 874–882 (2001)

    Article  Google Scholar 

  6. Goodman, N.: Seven strictures on similarity. In: Problems and Projects (1972)

    Google Scholar 

  7. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for similarity. Psychol. Rev. 100, 254–274 (1993)

    Article  Google Scholar 

  8. Peterson, J.C., Abbott, J.T., Griffiths, T.L.: Evaluating (and improving) the correspondence between deep neural networks and human representations. Cogn. Sci. 42, 2648–2669 (2018)

    Article  Google Scholar 

  9. Zheng, C.Y., Pereira, F., Baker, C.I., Hebart, M.N.: Revealing interpretable object representations from human behavior. In: ICLR (2019)

    Google Scholar 

  10. Hebart, M.N., Zheng, C.Y., Pereira, F., Baker, C.I.: Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nat. Hum. Behav. 4, 1173–1185 (2020)

    Article  Google Scholar 

  11. Kubilius, J., Bracci, S., Op de Beeck, H.P.: Deep neural networks as a model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896 (2016)

    Article  Google Scholar 

  12. Pramod, R.T., Arun, S.P.: Do computational models differ systematically from human object perception? In: CVPR, pp. 1601–1609 (2016)

    Google Scholar 

  13. Sadovnik, A., Gharbi, W., Vu, T., Gallagher, A.C.: Finding your lookalike: measuring face similarity rather than face identity. In: CVPR Workshops, pp. 2345–2353 (2018)

    Google Scholar 

  14. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

    Google Scholar 

  15. German, J.S., Jacobs, R.A.: Can machine learning account for human visual object shape similarity judgments? Vis. Res. 167, 87–99 (2020)

    Article  Google Scholar 

  16. Rosenfeld, A., Solbach, M.D., Tsotsos, J.K.: Totally looks like - how humans compare, compared to machines. In: ACCV, pp. 282–297 (2018)

    Google Scholar 

  17. Hamilton, M., Fu, S., Freeman, W.T., Lu, M.: Conditional image retrieval. CoRR, abs/2007.07177 (2020)

    Google Scholar 

  18. Attarian, M., Roads, B.D., Mozer, M.C.: Transforming neural network visual representations to predict human judgments of similarity. In: SVRHM Workshop (2020)

    Google Scholar 

  19. Chen, C., Li, O., Barnett, A., Su, J., Rudin, C.: This looks like that: deep learning for interpretable image recognition. CoRR, abs/1806.10574 (2018)

    Google Scholar 

  20. Nauta, M., Jutte, A., Provoost, J.C., Seifert, C.: This looks like that, because ... explaining prototypes for interpretable image recognition. CoRR, abs/2011.02863 (2020)

    Google Scholar 

  21. Risser-Maroix, O., Kurtz, C., Loménie, N.: Learning an adaptation function to assess image visual similarities. In: ICIP, pp. 2498–2502 (2021)

    Google Scholar 

  22. Takmaz, A., Probst, T., Pani Paudel, D., Van Gool, L.: Learning feature representations for look-alike images. In: CVPR Workshops (2019)

    Google Scholar 

  23. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, vol. 139, pp. 8748–8763 (2021)

    Google Scholar 

  24. Cichy, R.M., Kaiser, D.: Deep neural networks as scientific models. Trends Cogn. Sci. 23, 305–317 (2019)

    Article  Google Scholar 

  25. Zhuang, C., et al.: Unsupervised neural network models of the ventral visual stream. Proc. Natl. Acad. Sci. 118, 237–250 (2021)

    Article  Google Scholar 

  26. Lake, B., Zaremba, W., Fergus, R., Gureckis, T.: Neural networks predict category typicality ratings for images. In: CogSci, pp. 1–15 (2015)

    Google Scholar 

  27. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: ICCV, pp. 3018–3027 (2017)

    Google Scholar 

  28. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Risser-Maroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Risser-Maroix, O., Kurtz, C., Loménie, N. (2022). Discovering Respects for Visual Similarity. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2022. Lecture Notes in Computer Science, vol 13813. Springer, Cham. https://doi.org/10.1007/978-3-031-23028-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23028-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23027-1

  • Online ISBN: 978-3-031-23028-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics