Skip to main content

Human Description in the Wild: Description of the Scene with Ensembles of AI Models

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2022)

Abstract

Describing an image scene in Natural Language is a very complex procedure for a machine. Many researchers have used Natural Language Processing approaches. In this paper Machine Learning and Computer Vision models will be illustrated with the purpose of describing a picture in the wild. Action Recognition models, Face Recognition with gender and age and Clothing Recognition will be performed in combination with the purpose of generating a textual sentence belonging to natural language describing the scene in the picture. The proposed technique can target multiple domains, specifically useful for preventing cyberbullying situations. In addition, an attempt will be made to exceed for each model the current SoA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ge, Y., Zhang, R., Wang, X., Tang, X., Luo, P.: DeepFashion2: a versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019-June, pp. 5332–5340 (2019). https://doi.org/10.1109/CVPR.2019.00548

  2. Sidnev, A., Trushkov, A., Kazakov, M., Korolev, I., Sorokin, V.: DeepMark: one-shot clothing detection. In: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 3201–3204 (2019). https://doi.org/10.1109/ICCVW.2019.00399

  3. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9, 2170–2179 (2014). https://doi.org/10.1109/TIFS.2014.2359646

    Article  Google Scholar 

  4. Levi, G., Hassncer, T.: Age and gender classification using convolutional neural networks. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2015-October, pp. 34–42 (2015). https://doi.org/10.1109/CVPRW.2015.7301352

  5. Khan, F.S., Xu, J., van de Weijer, J., Bagdanov, A.D., Anwer, R.M., Lopez, A.M.: Recognizing actions through action-specific person detection. IEEE Trans. Image Process. 24, 4422–4432 (2015). https://doi.org/10.1109/TIP.2015.2465147

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohammadi, S., Majelan, S.G., Shokouhi, S.B.: Ensembles of deep neural networks for action recognition in still images. In: 2019 9th International Conference on Computer and Knowledge Engineering, ICCKE 2019, pp. 315–318 (2020). https://doi.org/10.1109/ICCKE48569.2019.8965014

  7. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021). https://doi.org/10.1109/TPAMI.2019.2929257

    Article  Google Scholar 

  8. Zhang, K., et al.: Age group and gender estimation in the wild with deep RoR architecture. IEEE Access 5, 22492–22503 (2017). https://doi.org/10.1109/ACCESS.2017.2761849

    Article  Google Scholar 

  9. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep Face Recognition. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 41.1–41.12 (2015). https://doi.org/10.5244/C.29.41

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPRW.2009.5206848

  12. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L., Fei-Fei, L.: Human action recognition by learning bases of action attributes and parts. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1331–1338 (2011). https://doi.org/10.1109/ICCV.2011.6126386

  13. Soomro, K., Roshan Zamir, A., Shah, M.: UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild (2012)

    Google Scholar 

  14. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) (2017)

    Google Scholar 

  15. Huang, C.T., Chen, Y., Lin, R., Kuo, C.C.J.: Age/gender classification with whole-component convolutional neural networks (WC-CNN). In: Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017, 2018-February, pp. 1282–1285 (2018). https://doi.org/10.1109/APSIPA.2017.8282221

Download references

Acknowledgments

This work is supported by the Italian Ministry of Education, University and Research within the PRIN2017 - BullyBuster project - A framework for bullying and cyberbullying action detection by computer vision and artificial intelligence methods and algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Gattulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dentamaro, V., Gattulli, V., Giglio, P., Impedovo, D., Pirlo, G. (2022). Human Description in the Wild: Description of the Scene with Ensembles of AI Models. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2022. Lecture Notes in Computer Science, vol 13813. Springer, Cham. https://doi.org/10.1007/978-3-031-23028-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23028-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23027-1

  • Online ISBN: 978-3-031-23028-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics