Skip to main content

An Efficient Federated Convolutional Neural Network Scheme with Differential Privacy

  • Conference paper
  • First Online:
Emerging Information Security and Applications (EISA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1641))

  • 330 Accesses

Abstract

Federated learning can complete the neural network model training without uploading users’ private data. However, the deep leakage from gradients (DLG) and the compensatory reconstruction attack (CRA) can reconstruct the training data according to the gradients uploaded by users. We propose an efficient federated convolutional neural network scheme with differential privacy to solve this problem. By adding Gaussian noise to the fully connected layers of the convolutional neural network, the attacker cannot identify the critical gradients that cause privacy leakage. The cumulative privacy loss is tracked using the analytical moments accountant technique. We conduct extensive experiments on the MNIST and CIFAR10 datasets to evaluate our defense algorithm. After selecting appropriate parameters, the results show that our defense algorithm can defend against DLG and CRA while maintaining a high model accuracy.

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC02040400.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629 (2016)

  2. Degan, E., et al.: Application of federated learning in medical imaging. In: Ludwig, H., Baracaldo, N. (eds.) Federated Learning, pp. 483–497. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96896-0_22

    Chapter  Google Scholar 

  3. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: 24th Proceedings of the Conference on Computer and Communications Security, pp. 603–618. ACM, New York (2017)

    Google Scholar 

  4. Zhu, L., Han, S.: Deep leakage from gradients. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_2

    Chapter  Google Scholar 

  5. Zhao, B., Konda, R.M., Hakan, B.: iDLG: improved deep leakage from gradients. arXiv preprint arXiv:2001.02610 (2020)

  6. Aono, Y., Hayashi, T., Wang, L., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)

    Google Scholar 

  7. Zhang, Q., Jing, S., Zhao, C., Zhang, B., Chen, Z.: Efficient federated learning framework based on multi-key homomorphic encryption. In: Barolli, L. (ed.) 3PGCIC 2021. LNNS, vol. 343, pp. 88–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89899-1_10

    Chapter  Google Scholar 

  8. Bonawitz, K., Ivanov, V., Kreuter, B., et al.: Practical secure aggregation for privacy-preserving machine learning. In: 16th Proceedings of the Conference on Computer and Communications Security, pp. 1175–1191. ACM SIGSAC, Dallas (2017)

    Google Scholar 

  9. Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H.: HybridAlpha: an efficient approach for privacy-preserving federated learning. In: 12th Proceedings of ACM Workshop on Artificial Intelligence and Security, pp. 13–23. ACM (2019)

    Google Scholar 

  10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  11. Zhang, D., Chen, X., Wang, D., et al.: A survey on collaborative deep learning and privacy-preserving. In: 3th International Conference on Data Science in Cyberspace, pp. 652–658. IEEE, Guangzhou (2018)

    Google Scholar 

  12. Long, G., Shen, T., Tan, Y., Gerrard, L., Clarke, A., Jiang, J.: Federated learning for privacy-preserving open innovation future on digital health. In: Chen, F., Zhou, J. (eds.) Humanity Driven AI, pp. 113–133. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-72188-6_6

    Chapter  Google Scholar 

  13. McMahan, H.B., Moore, E., Ramage, D., et al.: Federated learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629 (2016)

  14. Zhang, S., Zhang, C., You, Z., et al: Asynchronous stochastic gradient descent for DNN training. In: International Conference on Acoustics, Speech and Signal Processing, pp. 6660–6663. IEEE, Florence (2013)

    Google Scholar 

  15. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: 22nd Conference on Computer and Communications Security, pp. 1310–1321. ACM SIGSAC, New York (2015)

    Google Scholar 

  16. Mi, H., et al.: Collaborative deep learning across multiple data centers. Sci. China Inf. Sci. 63(8), 182102 (2020). https://doi.org/10.1007/s11432-019-2705-2

    Article  MathSciNet  Google Scholar 

  17. Augenstein, S., et al.: Generative models for effective ml on private, decentralized datasets. arXiv preprint arXiv:1911.06679 (2019)

  18. Huang, X., Ding, Y., Jiang, Z.L., Qi, S., Wang, X., Liao, Q.: DP-FL: a novel differentially private federated learning framework for the unbalanced data. World Wide Web 23(4), 2529–2545 (2020). https://doi.org/10.1007/s11280-020-00780-4

    Article  Google Scholar 

  19. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  20. Mironov, I.: Rényi differential privacy. In: 30th Computer Security Foundations Symposium, pp. 263–275. IEEE, Santa Barbara (2017)

    Google Scholar 

  21. Wang, Y.X., Balle, B., Kasiviswanathan, S.-P.: Subsampled Rényi differential privacy and analytical moments accountant. In: 22nd International Conference on Artificial Intelligence and Statistics, pp. 1226–1235. PMLR, Naha (2019)

    Google Scholar 

  22. Sun, J., Li, A., Wang, B., et al.: Soteria: provable defense against privacy leakage in federated learning from representation perspective. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 9311–9319. IEEE, virtual (2021)

    Google Scholar 

  23. Brendan, M.H., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private recurrent language models. In: 6nd International Conference on Learning Representations, Vancouver (2018)

    Google Scholar 

  24. Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  26. Li, A., Sun, J., Wang, B., et al.: LotteryFL: personalized and communication-efficient federated learning with lottery ticket hypothesis on non-IID datasets. arXiv preprint arXiv:2008.03371 (2020)

  27. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the Conference on Computer and Communications Security, pp. 308–318. ACM SIGSAC, Vienna (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dayin Zhang , Xiaojun Chen or Jinqiao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Chen, X., Shi, J. (2022). An Efficient Federated Convolutional Neural Network Scheme with Differential Privacy. In: Chen, J., He, D., Lu, R. (eds) Emerging Information Security and Applications. EISA 2022. Communications in Computer and Information Science, vol 1641. Springer, Cham. https://doi.org/10.1007/978-3-031-23098-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23098-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23097-4

  • Online ISBN: 978-3-031-23098-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics