Skip to main content

HBMD-FL: Heterogeneous Federated Learning Algorithm Based on Blockchain and Model Distillation

  • Conference paper
  • First Online:
Emerging Information Security and Applications (EISA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1641))

Abstract

Federated learning is a distributed machine learning framework that allows participants to keep their privacy data locally. Traditional federated learning coordinates participants collaboratively train a powerful global model. However, this process has several problems: it cannot meet the heterogeneous model’s requirements, and it cannot resist poisoning attacks and single-point-of-failure. In order to resolve these issues, we proposed a heterogeneous federated learning algorithm based on blockchain and model distillation. The problem of fully heterogeneous models that are hard to aggregate in the central server can be solved by leveraging model distillation technology. Moreover, blockchain replaces the central server in federated learning to solve the single-point-of-failure problem. The validation algorithm is combined with cross-validation, which helps federated learning to resist poison attacks. The extensive experimental results demonstrate that HBMD-FL can resist poisoning attacks while losing less than 3\(\%\) of model accuracy, and the communication consumption significantly outperformed the comparison algorithm.

This work is partially supported by Natural Science Foundation of China (62206238), Natural Science Foundation of Jiangsu Province (Grant No. BK20220562), Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 22KJB520010), Future Network Scientific Research Fund Project (FNSRFP-2021-YB-47), Yangzhou City-Yangzhou University Science and Technology Cooperation Fund Project (YZ2021158).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  2. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  3. Corinzia, L., Beuret, A., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)

  4. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)

  5. Khodak, M., Balcan, M.F.F., Talwalkar, A.S.: Adaptive gradient-based meta-learning methods. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  6. He, C., Annavaram, M., Avestimehr, S.: Towards non-IID and invisible data with FedNAS: federated deep learning via neural architecture search. arXiv preprint arXiv:2004.08546 (2020)

  7. Li, D., Wang, J.: FedMD: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)

  8. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  9. Shen, T., et al.: Federated mutual learning. arXiv preprint arXiv:2006.16765 (2020)

  10. Mo, Z., Gao, Z., Zhao, C., Lin, Y.: FedDQ: a communication-efficient federated learning approach for Internet of Vehicles. J. Syst. Archit. 131, 102690 (2022). https://www.sciencedirect.com/science/article/pii/S1383762122001928

  11. Sattler, F., Marban, A., Rischke, R., Samek, W.: CFD: communication-efficient federated distillation via soft-label quantization and delta coding. IEEE Trans. Netw. Sci. Eng. 9(4), 2025–2038 (2022)

    Article  MathSciNet  Google Scholar 

  12. Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Article  Google Scholar 

  13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev., 21260 (2008)

    Google Scholar 

  14. Samarakoon, S., Bennis, M., Saad, W., Debbah, M.: Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Trans. Commun. 68(2), 1146–1159 (2019)

    Article  Google Scholar 

  15. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources in mobile edge. In: ICC 2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2019)

    Google Scholar 

  16. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Article  MATH  Google Scholar 

  17. He, C., et al.: FedML: a research library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518 (2020)

  18. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  19. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  20. Wu, Q., He, K., Chen, X.: Personalized federated learning for intelligent IoT applications: a cloud-edge based framework. IEEE Open J. Comput. Soc. 1, 35–44 (2020)

    Article  Google Scholar 

  21. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-learning approach. CoRR, vol. abs/2002.07948 (2020). https://arxiv.org/abs/2002.07948

  22. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers. CoRR, vol. abs/1912.00818 (2019). http://arxiv.org/abs/1912.00818

  23. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  24. Wang, C., Yang, G., Papanastasiou, G., Zhang, H., Rodrigues, J.J., de Albuquerque, V.H.C.: Industrial cyber-physical systems-based cloud IoT edge for federated heterogeneous distillation. IEEE Trans. Industr. Inf. 17(8), 5511–5521 (2020)

    Article  Google Scholar 

  25. Peng, Z., et al.: VFChain: enabling verifiable and auditable federated learning via blockchain systems. IEEE Trans. Netw. Sci. Eng. 9(1), 173–186 (2021)

    Article  Google Scholar 

  26. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  27. Zhang, W., et al.: Blockchain-based federated learning for device failure detection in industrial IoT. IEEE Internet Things J. 8(7), 5926–5937 (2020)

    Article  Google Scholar 

  28. Nguyen, D.C., et al.: Federated learning meets blockchain in edge computing: opportunities and challenges. IEEE Internet Things J. 8(16), 12806–12825 (2021)

    Article  Google Scholar 

  29. Awan, S., Li, F., Luo, B., Liu, M.: Poster: a reliable and accountable privacy-preserving federated learning framework using the blockchain. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2561–2563 (2019)

    Google Scholar 

  30. Chen, H., Asif, S.A., Park, J., Shen, C.C., Bennis, M.: Robust blockchained federated learning with model validation and proof-of-stake inspired consensus. arXiv preprint arXiv:2101.03300 (2021)

  31. Majeed, U., Hong, C.S.: FLchain: Federated learning via MEC-enabled blockchain network. In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4. IEEE (2019)

    Google Scholar 

  32. Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Netw. 35(1), 234–241 (2020)

    Article  Google Scholar 

  33. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiale Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, J., Zhu, J., Li, W. (2022). HBMD-FL: Heterogeneous Federated Learning Algorithm Based on Blockchain and Model Distillation. In: Chen, J., He, D., Lu, R. (eds) Emerging Information Security and Applications. EISA 2022. Communications in Computer and Information Science, vol 1641. Springer, Cham. https://doi.org/10.1007/978-3-031-23098-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23098-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23097-4

  • Online ISBN: 978-3-031-23098-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics