Skip to main content

Hardness of Bounding Influence via Graph Modification

  • Conference paper
  • First Online:
SOFSEM 2023: Theory and Practice of Computer Science (SOFSEM 2023)

Abstract

We consider the problem of minimally modifying graphs and digraphs by way of exclusively deleting vertices, exclusively deleting edges, or exclusively adding new edges, with or without connectivity constraints for the resulting graph or digraph, to ensure that centrality-based influence scores of all vertices satisfy either a specified lowerbound \(\mathcal {A}\) or upperbound \(\mathcal {B}\). Here, we classify the hardness of exactly or approximately solving this problem for: (1) all vertex- and edge-deletion cases for betweenness, harmonic, degree, and in-degree centralities; (2) all vertex-deletion cases for eigenvector, Katz, and PageRank centralities; (3) all edge-deletion cases for eigenvector, Katz, and PageRank centralities under a connectivity or weak-connectivity constraint; and (4) a set of edge-addition cases for harmonic, degree, and in-degree centralities. We show that some of our results, in particular multiple results concerning betweenness, eigenvector, Katz, and PageRank centralities, hold for planar graphs and digraphs. Finally, under a variety of constraints, we establish that no polynomial time constant factor approximation algorithm can exist for computing the cardinality of a minimum set of vertices or minimum set of edges whose deletion ensures a lowerbound betweenness centrality score, or a lower- or upperbound eigenvector, Katz, or PageRank centrality score (unless \(P = NP\)).

Supported by JSPS Kakenhi grants {20K21827, 21H05052, 20H05967}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Ridder et al. H.N.: Information System on Graph Classes and their Inclusions (ISGCI). https://www.graphclasses.org. Accessed Sept 2021

  2. Avrachenkov, K., Litvak, N.: The effect of new links on google PageRank. Stoch. Model. 22(2), 319–331 (2006). https://doi.org/10.1080/15326340600649052

    Article  MathSciNet  MATH  Google Scholar 

  3. Baran, P.: Reliable digital communications systems using unreliable network repeater nodes. Document P-1995, pp. 1–30. the RAND Corporation, Santa Monica, CA (1960)

    Google Scholar 

  4. Baran, P.: On distributed communications: I. Introduction to distributed communications networks. Memorandum RM-3420-PR, pp. 1–51. the RAND Corporation, Santa Monica, CA (1964)

    Google Scholar 

  5. Baran, P.: The beginnings of packet switching: some underlying concepts. IEEE Commun. Mag. 40(7), 42–48 (2002). https://doi.org/10.1109/MCOM.2002.1018006

    Article  Google Scholar 

  6. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950). https://doi.org/10.1121/1.1906679

    Article  Google Scholar 

  7. Bazgan, C., Santha, M., Tuza, Z.: On the approximation of finding a(nother) Hamiltonian cycle in cubic Hamiltonian graphs. J. Algorithms 31(1), 249–268 (1999). https://doi.org/10.1006/jagm.1998.0998

    Article  MathSciNet  MATH  Google Scholar 

  8. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965). https://doi.org/10.1002/bs.3830100205

    Article  Google Scholar 

  9. Bergamini, E., Crescenzi, P., D’Angelo, G., Meyerhenke, H., Severini, L., Velaj, Y.: Improving the betweenness centrality of a node by adding links. J. Exp. Algorithmics 23(1), 1.5:1–1.5:32 (2018). https://doi.org/10.1145/3166071

  10. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Int. Technol. 5(1), 92–128 (2005). https://doi.org/10.1145/1052934.1052938

    Article  Google Scholar 

  11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

  12. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. ACM Trans. Knowl. Discov. Data 11(1), 9:1–9:32 (2016). https://doi.org/10.1145/2953882

  13. Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization in polynomial time by stochastic shortest path reformulation. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 89–103. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16108-7_11

    Chapter  Google Scholar 

  14. Csáji, B.C., Jungers, R.M., Blondel, V.D.: PageRank optimization by edge selection. Discret. Appl. Math. 169, 73–87 (2014). https://doi.org/10.1016/j.dam.2014.01.007

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Angelo, G., Severini, L., Velaj, Y.: On the maximum betweenness improvement problem. Electron. Notes Theor. Comput. Sci. 322, 153–168 (2016). https://doi.org/10.1016/j.entcs.2016.03.011

    Article  MathSciNet  MATH  Google Scholar 

  16. Davies, D.W.: Proposal for a digital communication network. Unpublished memorandum, pp. 1–28. National Physical Laboratory, London (1966)

    Google Scholar 

  17. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  18. Fercoq, O., Akian, M., Bouhtou, M., Gaubert, S.: Ergodic control and polyhedral approaches to PageRank optimization. IEEE Trans. Autom. Contr. 58(1), 134–148 (2013). https://doi.org/10.1109/TAC.2012.2226103

    Article  MathSciNet  MATH  Google Scholar 

  19. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). https://doi.org/10.2307/3033543

    Article  Google Scholar 

  20. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976). https://doi.org/10.1137/0205049

    Article  MathSciNet  MATH  Google Scholar 

  21. Gould, P.R.: On the geographical interpretation of eigenvalues. Trans. Inst. Br. Geogr. 42, 53–86 (1967). https://doi.org/10.2307/621372

    Article  Google Scholar 

  22. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer botnets: overview and case study. In: Proceedings of 1st Workshop on Hot Topics in Understanding Botnets (HotBots), pp. 1–8 (2007)

    Google Scholar 

  23. Han, C.G., Lee, S.H.: Analysis of effect of an additional edge on eigenvector centrality of graph. J. Korea Soc. Comput. Inf. 21(1), 25–31 (2016). https://doi.org/10.9708/jksci.2016.21.1.025

    Article  Google Scholar 

  24. Harary, F.: Status and contrastatus. Sociometry 22(1), 23–43 (1959). https://doi.org/10.2307/2785610

    Article  MathSciNet  Google Scholar 

  25. Ishakian, V., Erdös, D., Terzi, E., Bestavros, A.: A framework for the evaluation and management of network centrality. In: Proceedings of 12th SIAM International Conference on Data Mining (SDM), pp. 427–438 (2012). https://doi.org/10.1137/1.9781611972825.37

  26. Ishii, H., Tempo, R.: Computing the PageRank variation for fragile web data. SICE J. Control Meas. Syst. Integr. 2(1), 1–9 (2009). https://doi.org/10.9746/jcmsi.2.1

  27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  28. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953). https://doi.org/10.1007/BF02289026

    Article  MATH  Google Scholar 

  29. de Kerchove, C., Ninove, L., van Dooren, P.: Maximizing PageRank via outlinks. Linear Algebra Appl. 429(5–6), 1254–1276 (2008). https://doi.org/10.1016/j.laa.2008.01.023

    Article  MathSciNet  MATH  Google Scholar 

  30. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2, 371–385 (2010). https://doi.org/10.1007/s12599-010-0127-3

    Article  Google Scholar 

  31. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.1016/0022-0000(80)90060-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Lozin, V.V.: On maximum induced matchings in bipartite graphs. Inf. Process. Lett. 81(1), 7–11 (2002). https://doi.org/10.1016/S0020-0190(01)00185-5

    Article  MathSciNet  MATH  Google Scholar 

  33. MacCluer, C.R.: The many proofs and applications of Perron’s theorem. SIAM Rev. 42(3), 487–498 (2000). https://doi.org/10.1137/S0036144599359449

    Article  MathSciNet  MATH  Google Scholar 

  34. Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A 285(3–4), 539–546 (2000). https://doi.org/10.1016/S0378-4371(00)00311-3

    Article  MATH  Google Scholar 

  35. Natanzon, A.: Complexity and approximation of some graph modification problems. Masters thesis, pp. 1–60. Tel Aviv University, Department of Computer Science (1999)

    Google Scholar 

  36. Olsen, M., Viglas, A.: On the approximability of the link building problem. Theoret. Comput. Sci. 518, 96–116 (2014). https://doi.org/10.1016/j.tcs.2013.08.003

    Article  MathSciNet  MATH  Google Scholar 

  37. Plesńik, J.: The NP-completeness of the Hamiltonian cycle problem in planar diagraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979). https://doi.org/10.1016/0020-0190(79)90023-1

    Article  MATH  Google Scholar 

  38. Roberts, L.G.: Multiple computer networks and intercomputer communication. In: Proceedings of 1st ACM Symposium on Operating System Principles (SOSP), pp. 3.1–3.6 (1967). https://doi.org/10.1145/800001.811680

  39. Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. In: Proceedings of 6th Conference on Applications of Social Network Analysis (ASNA) (2009)

    Google Scholar 

  40. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966). https://doi.org/10.1007/BF02289527

    Article  MathSciNet  MATH  Google Scholar 

  41. Tolles, J., Luong, T.B.: Modeling epidemics with compartmental models. J. Am. Med. Assoc. 323(24), 2515–2516 (2020). https://doi.org/10.1001/jama.2020.8420

    Article  Google Scholar 

  42. Unnithan, S.K.R., Kannan, B., Jathavedan, M.: Betweenness centrality in some classes of graphs. Int. J. Comb. 2014(Article ID 241723), 1–12 (2014). https://doi.org/10.1155/2014/241723

  43. Vigna, S.: Spectral ranking. Netw. Sci. 4(4), 433–445 (2016). https://doi.org/10.1017/nws.2016.21

    Article  Google Scholar 

  44. Vormayr, G., Zseby, T., Fabini, J.: Botnet communication patterns. IEEE Commun. Surv. Tut. 19(4), 2768–2796 (2017). https://doi.org/10.1109/COMST.2017.2749442

    Article  Google Scholar 

  45. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. IEEE Trans. Depend. Secure Comput. 7(2), 113–127 (2010). https://doi.org/10.1109/TDSC.2008.35

    Article  Google Scholar 

  46. White, D.R., Borgatti, S.P.: Betweenness centrality measures for directed graphs. Soc. Netw. 16(4), 335–346 (1994). https://doi.org/10.1016/0378-8733(94)90015-9

    Article  Google Scholar 

  47. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings of 10th Annual ACM Symposium on Theory of Computing (STOC), pp. 253–264 (1978). https://doi.org/10.1145/800133.804355

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Barish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barish, R.D., Shibuya, T. (2023). Hardness of Bounding Influence via Graph Modification. In: Gąsieniec, L. (eds) SOFSEM 2023: Theory and Practice of Computer Science. SOFSEM 2023. Lecture Notes in Computer Science, vol 13878. Springer, Cham. https://doi.org/10.1007/978-3-031-23101-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23101-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23100-1

  • Online ISBN: 978-3-031-23101-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics