Skip to main content

Optimal Resource Allocation for Computation Offloading in Maritime Communication Networks: An Energy-Efficient Design via Matching Game

  • Conference paper
  • First Online:
Game Theory for Networks (GameNets 2022)

Abstract

The increasing growth of maritime activities leads to the challenges for processing the maritime data. However, the resources-limited maritime devices cannot meet the requirements of transmission delay and energy consumption. In this paper, we investigate the resource allocation for computation offloading in maritime communication networks via game theory to improve the offloading efficiency and reduce the energy consumption of maritime devices. Specifically, we propose an optimization problem that jointly optimizes the offloading data, the computation resource allocation of unmanned surface vehicle (USV) and the allocation of acoustic channels, with the objective of minimizing the total energy consumption of underwater wireless sensor (UWS). Despite the non-convexity of the joint optimization problem, we propose a layered structure and decompose it into a top-problem for optimizing the data offloading, a middle-problem for optimizing the computation resource allocation of USV, a bottom problem for optimizing the channel allocation. We conduct simulations to validate the effectiveness and efficiency of the proposed algorithms.

This work was supported in part by National Natural Science Foundation of China under Grants 62122069, 62072490, and 62071431, in part by FDCT-MOST Joint Project under Grant 0066/2019/AMJ, in part by Science and Technology Development Fund of Macau SAR under Grants 0060/2019/A1 and 0162/2019/A3, in part by the Intergovernmental International Cooperation in Science and Technology Innovation Program under Grant 2019YFE0111600, in part by FDCT SKL-IOTSC(UM)-2021-2023, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515011287 and GDST 2020B1212030003, and in part by Research Grant of University of Macau under Grants MYRG2020-00107-IOTSC and MYRG2018-00237-FST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qiu, T., Zhao, Z., Zhang, T., Chen, C., Chen, C.L.P.: Underwater internet of things in smart ocean: system architecture and open issues. IEEE Trans. Industr. Inf. 16(7), 4297–4307 (2020)

    Article  Google Scholar 

  2. Wei, T., Feng, W., Chen, Y., Wang, C.-X., Ge, N., Lu, J.: Hybrid satellite-terrestrial communication networks for the maritime internet of things: key technologies, opportunities, and challenges. IEEE Internet Things J. 8(11), 8910–8934 (2021)

    Article  Google Scholar 

  3. Arienzo, L.: Green RF/FSO communications in cognitive relay-based space information networks for maritime surveillance. IEEE Trans. Cogn. Commun. Netw. 5(4), 1182–1193 (2019)

    Article  Google Scholar 

  4. Zeng, H., Hou, Y.T., Shi, Y., Lou, W., Kompella, S., Midkiff, S.F.: A distributed scheduling algorithm for underwater acoustic networks with large propagation delays. IEEE Trans. Commun. 65(3), 1131–1145 (2017)

    Article  Google Scholar 

  5. Zhang, L., Liu, T., Motani, M.: Optimal multicasting strategies in underwater acoustic networks. IEEE Trans. Mob. Comput. 20(2), 678–690 (2021)

    Article  Google Scholar 

  6. Huang, X., Wu, K., Jiang, M., Huang, L., Xu, J.: Distributed resource allocation for general energy efficiency maximization in offshore maritime device-to-device communication. IEEE Wirel. Commun. Lett. 10(6), 1344–1348 (2021)

    Article  Google Scholar 

  7. Fang, F., Cheng, J., Ding, Z.: Joint energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network. IEEE Trans. Veh. Technol. 68(2), 1351–1364 (2019)

    Article  Google Scholar 

  8. Yildiz, I.U., Gungor, V.C., Tavli, B.: Packet size optimization for lifetime maximization in underwater acoustic sensor networks. IEEE Trans. Industr. Inf. 15(2), 719–729 (2019)

    Article  Google Scholar 

  9. Song, Y.: Underwater acoustic sensor networks with cost efficiency for internet of underwater things. IEEE Trans. Industr. Electron. 68(2), 1707–1716 (2021)

    Article  Google Scholar 

  10. Su, X., Meng, L., Huang, J.: Intelligent maritime networking with edge services and computing capability. IEEE Trans. Veh. Technol. 69(11), 13606–13620 (2020)

    Article  Google Scholar 

  11. Fu, S., et al.: Energy-efficient UAV enabled data collection via wireless charging: a reinforcement learning approach. IEEE Internet Things J. 8(2), 10209–10219 (2021)

    Article  Google Scholar 

  12. Wu, Y., Ni, K., Zhang, C., Qian, L.P., Tsang, D.H.K.: NOMA-assisted multi-access mobile edge computing: a joint optimization of computation offloading and time allocation. IEEE Trans. Veh. Technol. 67(12), 12244–12258 (2018)

    Article  Google Scholar 

  13. Dai, M., Su, Z., Xu, Q., Zhang, N.: Vehicle assisted computing offloading for unmanned aerial vehicles in smart city. IEEE Trans. Intell. Transp. Syst. 22(3), 1932–1944 (2021)

    Article  Google Scholar 

  14. Yang, T., Feng, H., Yang, C., Wang, Y., Dong, J., Xia, M.: Multivessel computation offloading in maritime mobile edge computing network. IEEE Internet Things J. 6(3), 4063–4073 (2019)

    Article  Google Scholar 

  15. Ma, R., Wang, R., Liu, G., Meng, W., Liu, X.: UAV-aided cooperative data collection scheme for ocean monitoring networks. IEEE Internet Things J. 8(17), 13222–13236 (2021)

    Article  Google Scholar 

  16. Yang, T., et al.: Two-stage offloading optimization for energy-latency tradeoff with mobile edge computing in maritime internet of things. IEEE Internet Things J. 7(7), 5954–5963 (2020)

    Article  Google Scholar 

  17. Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. In: Proceedings of ACM International Workshop Underwater Networking, pp. 41–47 (2006)

    Google Scholar 

  18. Qian, L., Wu, Y., Yu, N., Jiang, F., Zhou, H., Quek, T.Q.S.: Learning driven NOMA assisted vehicular edge computing via underlay spectrum sharing. IEEE Trans. Veh. Technol. 70(1), 977–992 (2021)

    Article  Google Scholar 

  19. Wu, Y., Song, Y., Wang, T., Qian, L., Quek, T.Q.S.: Non-orthogonal multiple access assisted federated learning via wireless power transfer: a cost-efficient approach. IEEE Trans. Commun. 70(4), 2853–2869 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, M., Luo, Z., Wang, T., Wu, Y., Qian, L., Lin, B. (2022). Optimal Resource Allocation for Computation Offloading in Maritime Communication Networks: An Energy-Efficient Design via Matching Game. In: Fang, F., Shu, F. (eds) Game Theory for Networks. GameNets 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 457. Springer, Cham. https://doi.org/10.1007/978-3-031-23141-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23141-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23140-7

  • Online ISBN: 978-3-031-23141-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics