Skip to main content

MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 902 Accesses

Abstract

Deep learning models have been widely studied and have achieved expert-level performance in medical imaging tasks such as diagnosis. Recent research also considers integrating data from various sources, for instance, chest X-rays (CXR) radiographs and electronic medical records (EMR), to further improve the performance. However, most existing methods ignore the intrinsic relations among different sources of data, thereby lack interpretability. In this paper, we propose a framework for pulmonary disease diagnosis that combines deep learning and domain-knowledge reasoning. We first formalize the standard medical guidelines into formal-logic rules, and then learn the weights of the rules from medical data, integrating multimodal data for pulmonary disease diagnosis. We verify our method on a real dataset collected from a hospital, and the experimental results show that the proposed method outperforms the previous state-of-the-art multi-modal baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arevalo, J., Solorio, T., Montes-y Gómez, M., González, F.A.: Gated multimodal units for information fusion. arXiv preprint arXiv:1702.01992 (2017)

  2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest X-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2020)

    Article  PubMed  Google Scholar 

  3. Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)

    Article  PubMed  Google Scholar 

  4. Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanan, B.G.: A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 34(5), 301–310 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, J.P., et al.: TorchXRayVision: a library of chest X-ray datasets and models (2020). https://github.com/mlmed/torchxrayvision

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  8. Hou, J., Gao, T.: Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection. Sci. Rep. 11(1), 1–15 (2021)

    Article  CAS  Google Scholar 

  9. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Thirty-Third AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  10. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. CORR abs/1901.07031, 1901 (2019)

    Google Scholar 

  11. Jiang, J., Li, X., Zhao, C., Guan, Y., Yu, Q.: Learning and inference in knowledge-based probabilistic model for medical diagnosis. Knowl. Based Syst. 138, 58–68 (2017)

    Article  Google Scholar 

  12. Kiela, D., Bhooshan, S., Firooz, H., Testuggine, D.: Supervised multimodal bitransformers for classifying images and text. arXiv preprint arXiv:1909.02950 (2019)

  13. Kok, S., et al.: The alchemy system for statistical relational AI. Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA (2005)

    Google Scholar 

  14. Li, L., et al.: Real-world data medical knowledge graph: construction and applications. Artif. Intell. Med. 103, 101817 (2020)

    Article  PubMed  Google Scholar 

  15. Nyga, D., Picklum, M., Beetz, M., et al.: PracMLN - Markov logic networks in Python (2013). https://www.pracmln.org/

  16. Peng, Y., Wang, X., Lu, L., Bagheri, M., Summers, R., Lu, Z.: NegBio: a high-performance tool for negation and uncertainty detection in radiology reports. AMIA Summits Transl. Sci. Proc. 2018, 188 (2018)

    PubMed Central  Google Scholar 

  17. Ren, H., et al.: Interpretable pneumonia detection by combining deep learning and explainable models with multisource data. IEEE Access 9, 95872–95883 (2021). https://doi.org/10.1109/ACCESS.2021.3090215

    Article  Google Scholar 

  18. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)

    Article  Google Scholar 

  19. Shen, Y., et al.: CBN: constructing a clinical Bayesian network based on data from the electronic medical record. J. Biomed. Inform. 88, 1–10 (2018)

    Article  PubMed  Google Scholar 

  20. Singh, R., et al.: Deep learning in chest radiography: detection of findings and presence of change. PloS One 13(10), e0204155 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sirazitdinov, I., Kholiavchenko, M., Kuleev, R., Ibragimov, B.: Data augmentation for chest pathologies classification. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1216–1219. IEEE (2019)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  23. Wang, G., et al.: A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat. Biomed. Eng. 5(6), 509–521 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  25. Yin, C., Zhao, R., Qian, B., Lv, X., Zhang, P.: Domain knowledge guided deep learning with electronic health records. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 738–747. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenyu Xu , Weibin Cheng or Kaishun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2022). MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics