Skip to main content

A Tensor Robust Model Based on Enhanced Tensor Nuclear Norm and Low-Rank Constraint for Multi-view Cancer Genomics Data

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 645 Accesses

Abstract

Cancer genomics data often contain multi-view resources of different data types, which provide rich complementary information. Analyzing multi-view cancer genomics data can effectively advance cancer research. The main process of analyzing multi-view cancer genomics data in this paper is to discover the relationship between cancers and genes by clustering cancer samples and identification of differentially expressed genes. To make full use of the consistency and complementarity between genomics data, we propose a new tensor robust model based on enhanced tensor nuclear norm and low-rank constraint (EPTR-TV). First, we define the concept of the enhanced partial sum of tensor nuclear norm (EPSTNN). It dramatically improves the flexibility of the tensor nuclear norm (TNN), effectively avoiding some errors brought by TNN when approximating tensor rank. Then, the anisotropic spatial-temporal total variation (TV) regularization is introduced, which enables the model to exploit the relationship between the structures of tensor data while focusing on the details of the tensor data features. In addition, EPSTNN and TV regularization are unified into the low-rank tensor framework for in-depth analysis of cancer genomics data. Finally, the iterative optimization problem of EPTR-TV is solved by alternating direction method of multipliers (ADMM). Experimental results from clustering and feature selection experiments performed on three multi-view cancer genomics datasets show that EPTR-TV outperforms other comparative models. These suggest that EPTR-TV plays an important role in identifying cancer subtypes and finding new carcinogenic information, thus providing important insights into cancer mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J.X., Xu, Y., Zheng, C.H., Kong, H., Lai, Z.H.: RPCA-based tumor classification using gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 12(4), 1 (2014)

    Google Scholar 

  2. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. Comput. Vis. Pattern Recognit., 5249–5257 (2016)

    Google Scholar 

  3. Hu, Y., Liu, J.-X., Gao, Y.-L., Li, S.-J., Wang, J.: Differentially expressed genes extracted by the tensor robust principal component analysis (TRPCA) method. Complexity 2019, 1–13 (2019). https://doi.org/10.1155/2019/6136245

    Article  CAS  Google Scholar 

  4. Zhao, Y.Y., Jiao, C.N., Wang, M.L., Liu, J.X., Zheng, C.H.: HTRPCA: hypergraph regularized tensor robust principal component analysis for sample clustering in tumor omics data. Interdiscip. Sci. Comput. Life Sci. (6) (2021)

    Google Scholar 

  5. Zhou, P., Feng J.: Outlier-robust tensor PCA. Comput. Vis. Pattern Recognit., 3938–3946 (2017)

    Google Scholar 

  6. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435(3), 641–658 (2011). https://doi.org/10.1016/J.LAA.2010.09.020

    Article  Google Scholar 

  7. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433(7), 1241–1253 (2010). https://doi.org/10.1016/J.LAA.2010.05.025

    Article  Google Scholar 

  8. Liu, Y., Chen, L., Zhu, C.: Improved robust tensor principal component analysis via low-rank core matrix. IEEE J. Sel. Top. Signal Process. 12(6), 1378–1389 (2018). https://doi.org/10.1109/JSTSP.2018.2873142

    Article  Google Scholar 

  9. Zhang, L., Peng, Z.: Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 11(4) (2019). https://doi.org/10.3390/RS11040382

  10. He, W., Zhang, H., Zhang, L., Shen, H.: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 54(1), 178–188 (2016). https://doi.org/10.1109/TGRS.2015.2452812

    Article  Google Scholar 

  11. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020). https://doi.org/10.1109/TPAMI.2019.2891760

    Article  PubMed  Google Scholar 

  12. Oh, T.-H., Tai, Y.-W., Bazin, J.-C., Kim, H., Kweon, I.S.: Partial sum minimization of singular values in robust PCA: algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 744–758 (2016). https://doi.org/10.1109/TPAMI.2015.2465956

    Article  PubMed  Google Scholar 

  13. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. Współczesna Onkologia 2015(1), 68–77 (2015)

    Article  Google Scholar 

  14. Safran, M., Dalah I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., et al.: GeneCards version 3: the human gene integrator. Database 2010 (2010)

    Google Scholar 

  15. Howe, J.R., Shellnut, J., Wagner, B., Ringold, J.C., Sayed, M.G., Ahmed, A.F., et al.: Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am. J. Hum. Genet. 70(5), 1357–1362 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, D., Wang, X., Wang, Y., Philips, D., Meng, W., Xiong, M., et al.: Mutation in BRAF and SMAD4 associated with resistance to neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Virchows Arch. 475(1), 39–47 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. Yu, M., Lin, Y., Zhou, Y., Jin, H., Hou, B., Wu, Z., et al.: MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. OncoTargets Ther. 9, 4705 (2016)

    Google Scholar 

  18. Bian, C., Li, Z., Xu, Y., Wang, J., Xu, L., Shen, H.: Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study. World J. Surg. Oncol. 13(1), 1–8 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61872220 and 62172254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Xing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiao, Q., Yuan, SS., Shang, J., Liu, JX. (2022). A Tensor Robust Model Based on Enhanced Tensor Nuclear Norm and Low-Rank Constraint for Multi-view Cancer Genomics Data. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics