Skip to main content

Effectively Training MRI Reconstruction Network via Sequentially Using Undersampled k-Space Data with Very Low Frequency Gaps

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 675 Accesses

Abstract

Convolutional Neural Networks (CNNs) have achieved great advances on Magnetic Resonance Imaging (MRI) reconstruction. However, CNNs are still suffering from significant aliasing artifacts for undersampled data with high acceleration rates. This is mainly due to the huge gap between the highly undersampled k-space data and its fully-sampled counterpart. To mitigate this problem, we constructed a series of well-organized undersampled k-space data, each of which has very small frequency gap with its neighbors. By sequentially using these undersampled data and their fully-sampled ones to train a given CNN model \(\mathcal {N}\), the model \(\mathcal {N}\) can gradually know how to fill the progressively increased frequency gaps and thus reduce the aliasing artifacts. Experiments on the MSSEG dataset demonstrated the effectiveness of the proposed training method.

X-X. Li and F. Zhang—This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grants LGF22F020027, GF22F037921 and LGF20H180002, in part by the program of the Education Department of Zhejiang Province under No. Y202147723 and Y202147457, in part by the National Natural Science Foundation of China uncer Grant 62271448.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference On Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Commowick, O., Cervenansky, F., Ameli, R.: Msseg challenge proceedings: multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure. In: MICCAI (2016)

    Google Scholar 

  3. Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)

    Article  PubMed  Google Scholar 

  4. Defazio, A., Murrell, T., Recht, M.: MRI banding removal via adversarial training. Adv. Neural. Inf. Process. Syst. 33, 7660–7670 (2020)

    Google Scholar 

  5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  Google Scholar 

  6. Eo, T., Jun, Y., Kim, T., Jang, J., Lee, H.J., Hwang, D.: Kiki-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 80(5), 2188–2201 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Fabian, Z., Heckel, R., Soltanolkotabi, M.: Data augmentation for deep learning based accelerated MRI reconstruction with limited data. In: International Conference on Machine Learning, pp. 3057–3067. PMLR (2021)

    Google Scholar 

  8. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference On Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  9. Huang, J., Chen, C., Axel, L.: Fast multi-contrast MRI reconstruction. Magn. Reson. Imaging 32(10), 1344–1352 (2014)

    Article  PubMed  Google Scholar 

  10. Jaspan, O.N., Fleysher, R., Lipton, M.L.: Compressed sensing MRI: a review of the clinical literature. Br. J. Radiol. 88(1056), 20150487 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jun, Y., Shin, H., Eo, T., Hwang, D.: Joint deep model-based mr image and coil sensitivity reconstruction network (joint-ICNet) for fast MRI. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270–5279 (2021)

    Google Scholar 

  12. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  13. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2019)

    Article  PubMed  Google Scholar 

  14. Li, X.-X., Chen, Z., Lou, X.-J., Yang, J., Chen, Y., Shen, D.: Multimodal MRI Acceleration via deep cascading networks with peer-layer-wise dense connections. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 329–339. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_32

    Chapter  Google Scholar 

  15. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: The application of compressed sensing for rapid mr imaging. Mag. Res. Med. Off. J. In. Soci. Mag. Res. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  16. Lyu, Q., et al.: Multi-contrast super-resolution MRI through a progressive network. IEEE Trans. Med. Imaging 39(9), 2738–2749 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muckley, M.J., et al.: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans. Med. Imaging 40(9), 2306–2317 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Polak, D., et al.: Joint multi-contrast variational network reconstruction (jvn) with application to rapid 2d and 3d imaging. Magn. Reson. Med. 84(3), 1456–1469 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. arXiv preprint arXiv:2104.07636 (2021)

  20. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for mr image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  21. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic mr image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018)

    Article  PubMed  Google Scholar 

  22. Sun, L., Fan, Z., Fu, X., Huang, Y., Ding, X., Paisley, J.: A deep information sharing network for multi-contrast compressed sensing MRI reconstruction. IEEE Trans. Image Process. 28(12), 6141–6153 (2019)

    Article  PubMed  Google Scholar 

  23. Wiatrak, M., Albrecht, S.V., Nystrom, A.: Stabilizing generative adversarial networks: A survey. arXiv preprint arXiv:1910.00927 (2019)

  24. Xiang, L., et al.: Deep-learning-based multi-modal fusion for fast mr reconstruction. IEEE Trans. Biomed. Eng. 66(7), 2105–2114 (2019)

    Google Scholar 

  25. Yang, G., et al.: DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  PubMed  Google Scholar 

  26. Zhang, Z., Romero, A., Muckley, M.J., Vincent, P., Yang, L., Drozdzal, M.: Reducing uncertainty in undersampled MRI reconstruction with active acquisition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2049–2058 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Xin Li or Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, TY., Li, XX., Chen, ZJ., Zheng, XY., Zhang, F. (2022). Effectively Training MRI Reconstruction Network via Sequentially Using Undersampled k-Space Data with Very Low Frequency Gaps. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics