Skip to main content

Private Epigenetic PaceMaker Detector Using Homomorphic Encryption - Extended Abstract

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 691 Accesses

Abstract

The Epigenetic Pacemaker (EPM) model uses DNA methylation data to predict human epigenetic age. The methylation values are collected from different individuals and are considered to be of medical importance. Sharing this data publicly among labs and other third parties for model calculation purposes may violate the privacy of personal medical records. The use of standard encryption approaches can prevent the exposure of these personal records to third parties, when at rest, but running computations on the data requires decrypting it first, and thus exposing the data to the computing party. This work proposes computing EPM while limiting data exposure by employing cryptographic secure computing techniques including homomorphic encryption. Our protocol has rigorous privacy guarantees against computationally bounded adversaries in the two-server model. We implemented a relaxed version of the protocol showing good correlation with low accuracy error between the model computed with and without encryption.

This work was supported in part by the Israel Science Foundation grant 3380/19 and 3291/21, and by the Israel National Cyber Directorate via the Haifa, BIU and Tel-Aviv Cyber Centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All measurements are for a known and identical set of genome sites.

References

  1. Akavia, A., Galili, B., Shaul, H., Weiss, M., Yakhini, Z.: SIR: privacy preserving feature selection for sparse linear regression. Manuscript (2022)

    Google Scholar 

  2. Akavia, A., Shaul, H., Weiss, M., Yakhini, Z.: Linear-regression on packed encrypted data in the two-server model. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pp. 21–32 (2019)

    Google Scholar 

  3. Blatt, M., Gusev, A., Polyakov, Y., Goldwasser, S.: Secure large-scale genome-wide association studies using homomorphic encryption. Proc. Natl. Acad. Sci. 117(21), 11608–11613 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonte, C., Makri, E., Ardeshirdavani, A., Simm, J., Moreau, Y., Vercauteren, F.: Towards practical privacy-preserving genome-wide association study. BMC Bioinform. 19(1), 1–12 (2018)

    Article  Google Scholar 

  5. Data61, C.: Python paillier library (2013). https://github.com/data61/python-paillier

  6. Dong, C., et al.: Maliciously secure and efficient large-scale genome-wide association study with multi-party computation. IEEE Trans. Dependable Secure Comput. (2022)

    Google Scholar 

  7. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_10

    Chapter  Google Scholar 

  8. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge regression with only linearly-homomorphic encryption. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 243–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_13

    Chapter  Google Scholar 

  9. Halevi, S.: Homomorphic encryption. In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography, pp. 219–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8_5

    Chapter  Google Scholar 

  10. Horvath, S.: DNA methylation age of human tissues and cell types. Genome Biol. 14(10), 1–20 (2013)

    Article  Google Scholar 

  11. Jaffe, A.E., et al.: Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat. Neurosci. 19(1), 40–47 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. Cryptology ePrint Archive, Report 2011/272 (2011)

    Google Scholar 

  13. Lu, W.J., Yamada, Y., Sakuma, J.: Privacy-preserving genome-wide association studies on cloud environment using fully homomorphic encryption. In: BMC Medical Informatics and Decision Making, vol. 15, pp. 1–8. Springer (2015). https://doi.org/10.1186/1472-6947-15-S5-S1

  14. Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2), 267–278 (1993)

    Article  Google Scholar 

  15. Muers, M.: Genomic pacemakers or ticking clocks? Nat. Rev. Genet. 14(2), 81–81 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  17. Pinho, G.M., et al.: Hibernation slows epigenetic ageing in yellow-bellied marmots. Nature Ecol. Evol. 6(4), 418–426 (2022)

    Article  Google Scholar 

  18. Simmons, S., Berger, B.: Realizing privacy preserving genome-wide association studies. Bioinformatics 32(9), 1293–1300 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith, Z.D., Meissner, A.: DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14(3), 204–220 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. Snir, S.: Epigenetic pacemaker: closed form algebraic solutions. BMC Genomics 21(2), 1–11 (2020)

    Google Scholar 

  21. Snir, S., Pellegrini, M.: An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10(6), 695–706 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Snir, S., vonHoldt, B.M., Pellegrini, M.: A statistical framework to identify deviation from time linearity in epigenetic aging. PLoS Comput. Biol. 12(11), e1005183 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Snir, S., Wolf, Y.I., Koonin, E.V.: Universal pacemaker of genome evolution. PLoS Comput. Biol. 8(11), e1002785 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Snir, S., Wolf, Y.I., Koonin, E.V.: Universal pacemaker of genome evolution in animals and fungi and variation of evolutionary rates in diverse organisms. Genome Biol. Evol. 6(6), 1268–1278 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang, P.S., Guy, M., Davenport, J.H.: P-adic reconstruction of rational numbers. ACM SIGSAM Bull. 16(2), 2–3 (1982)

    Article  Google Scholar 

  26. Wolf, Y.I., Snir, S., Koonin, E.V.: Stability along with extreme variability in core genome evolution. Genome Biol. Evol. 5(7), 1393–1402 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Goldenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goldenberg, M., Snir, S., Akavia, A. (2022). Private Epigenetic PaceMaker Detector Using Homomorphic Encryption - Extended Abstract. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics