Skip to main content

Applications of Data-Driven Policymaking in the Local Energy Transition: A Multiple-case Study in the Netherlands

  • Conference paper
  • First Online:
Electronic Participation (ePart 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13392))

Included in the following conference series:

  • 472 Accesses

Abstract

The potential of the use of data to help improve policymaking is increasingly recognized by governments, especially to address societal challenges. One of those societal challenges is the energy transition, which happens for a large part at the local government level. However, within the literature little is known about which type of applications are utilized for data-driven policymaking. From government practice a plethora of data-driven applications are mentioned to be under development or in experimental phase, but not much is known on which applications are actually utilized by policymakers. Therefore, the aim of this exploratory study is to gain insight into how these data-driven applications support policymaking for the local energy transition. To investigate this, we perform a multiple-case study of four municipalities in the Netherlands. Using an analytical framework derived from an literature overview of data-driven applications for the local energy transition, we carry out four case studies of the local energy transition in the Netherlands. We find that they use data-driven applications throughout the whole policy cycle. However, a significant gap exists between data-driven applications to enable and accelerate the energy transition currently implemented, and the desired applications, but also the potential applications found in literature. We recommend future research pertaining to integrated and actionable adoption strategies in order to bridge this gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, H., Titah, R.: Is big data used by cities? Understanding the nature and antecedents of big data use by municipalities. Gov. Inf. Q. 38(4) (2021). https://doi.org/10.1016/j.giq.2021.101600

  2. Veenstra, A.F., Kotterink, B.: Data-driven policy making: the policy lab approach. In: Parycek, P., et al. (eds.) ePart 2017. LNCS, vol. 10429, pp. 100–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64322-9_9

    Chapter  Google Scholar 

  3. Manfren, M., Nastasi, B., Groppi, D., Garcia, D.A.: Open data and energy analytics - an analysis of essential information for energy system planning, design and operation. Energy 213, 118803 (2020). https://doi.org/10.1016/j.energy.2020.118803

    Article  Google Scholar 

  4. Diran, D., Hoppe, T., Ubacht, J., Slob, A., Blok, K.: A Data ecosystem for data-driven thermal energy transition: reflection on current practice and suggestions for re-design. Energies 13(2), 444 (2020)

    Article  Google Scholar 

  5. Giest, S.: Big data for policymaking: fad or fasttrack? Policy Sci. 50(3), 367–382 (2017). https://doi.org/10.1007/s11077-017-9293-1

    Article  Google Scholar 

  6. Höchtl, J., Parycek, P., Schöllhammer, R.: Big data in the policy cycle: policy decision making in the digital era. J. Organ. Comput. Electron. Commer. 26(1–2), 147–169 (2016)

    Google Scholar 

  7. Gupta, R., Gregg, M.: Local energy mapping using publicly available data for urban energy retrofit. In: Dastbaz, M., Gorse, C., Moncaster, A. (eds.) Building Information Modelling, Building Performance, Design and Smart Construction, pp. 207–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50346-2_15

    Chapter  Google Scholar 

  8. Chen, Y., Hong, T., Piette, M.A.: Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Appl. Energy 205, 323–335 (2017)

    Article  Google Scholar 

  9. Henrich, B.: The Use of Energy Models in Heating Transition Decision Making: Insights from Ten Heating Transition Case Studies in the Netherlands. Delft University of Technology, Delft (2020)

    Google Scholar 

  10. Diran, D., Veenstra, A.F.: Towards data-driven policymaking for the urban heat transition in The Netherlands: barriers to the collection and use of data. In: Pereira, G.V., et al. (eds.) EGOV 2020. LNCS, vol. 12219, pp. 361–373. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57599-1_27

    Chapter  Google Scholar 

  11. Poel, M., Meyer, E.T., Schroeder, R.: Big data for policymaking: great expectations, but with limited progress? Policy Internet 10(3) (2018). https://doi.org/10.1002/poi3.176

  12. Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., Staffell, I.: The importance of open data and software: is energy research lagging behind? Energy Policy 101, 211–215 (2017)

    Article  Google Scholar 

  13. European Commission: Quality of public administration: a toolbox for practitioners. Publications Office of the European Union (2017). https://doi.org/10.2767/879305

  14. Kaselofsky, J., März, S., Schüle, R.: Bottom-up monitoring of municipal energy and climate policy: more than an alternative to top-down approaches? Prog. Ind. Ecol. 8(4) (2014). https://doi.org/10.1504/PIE.2014.066804

  15. Mapar, M., Jafari, M.J., Mansouri, N., Arjmandi, R., Azizinejad, R., Ramos, T.B.: Sustainability indicators for municipalities of megacities: integrating health, safety and environmental performance. Ecol. Ind. 83 (2017). https://doi.org/10.1016/j.ecolind.2017.08.012

  16. Soares, D., Sarantis, D., Lameiras, M.: Improve cities resilience and sustainability through e-government assessment (2018)

    Google Scholar 

  17. Fremouw, M., Bagaini, A., De Pascali, P.: Energy potential mapping: open data in support of urban transition planning. Energies 13(5), 1264 (2020)

    Article  Google Scholar 

  18. Ramachandra, T.V., Shruthi, B.V.: Spatial mapping of renewable energy potential. Renew. Sustain. Energy Rev. 11(7), 1460–1480 (2007)

    Article  Google Scholar 

  19. Linder, L., Vionnet, D., Bacher, J.P., Hennebert, J.: Big building data-a big data platform for smart buildings. Energy Procedia 122 (2017). https://doi.org/10.1016/j.egypro.2017.07.354

  20. Mathew, P.A., Dunn, L.N., Sohn, M.D., Mercado, A., Custudio, C., Walter, T.: Big-data for building energy performance: lessons from assembling a very large national database of building energy use. Appl. Energy 140, 85–93 (2015)

    Article  Google Scholar 

  21. Dalipi, F., Yayilgan, S.Y., Gebremedhin, A.: A cloud computing framework for smarter district heating systems. In: 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1413–1416 (2015)

    Google Scholar 

  22. Noussan, M., Jarre, M., Poggio, A.: Real operation data analysis on district heating load patterns. Energy 129, 70–78 (2017)

    Article  Google Scholar 

  23. Kontokosta, C.E., Reina, V.J., Bonczak, B.: Energy cost burdens for low-income and minority households: evidence from energy benchmarking and audit data in five US cities. J. Am. Plan. Assoc. 86(1), 89–105 (2020)

    Article  Google Scholar 

  24. Li, F.G.N., Strachan, N.: Take me to your leader: using socio-technical energy transitions (STET) modelling to explore the role of actors in decarbonisation pathways. Energy Res. Soc. Sci. 51, 67–81 (2019). https://doi.org/10.1016/j.erss.2018.12.010

    Article  Google Scholar 

  25. Peterson, M., Feldman, D.: Citizen preferences for possible energy policies at the national and state levels. Energy Policy 121, 80–91 (2018)

    Article  Google Scholar 

  26. van den Dobbelsteen, A., Roggema, R., Tillie, N., Broersma, S., Fremouw, M., Martin, C.L.: Urban energy masterplanning—approaches, strategies, and methods for the energy transition in cities. In: Urban Energy Transition, pp. 635–660. Elsevier (2018)

    Google Scholar 

  27. Al-Lawati, A., Barbosa, L.: A framework for intelligent policy decision making based on a government data hub. In: Alexandrov, D.A., Boukhanovsky, A.V., Chugunov, A.V., Kabanov, Y., Koltsova, O., Musabirov, I. (eds.) DTGS 2019. CCIS, vol. 1038, pp. 92–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37858-5_8

    Chapter  Google Scholar 

  28. Wang, D.Y.C., Trappey, A.J.C., Trappey, C.V., Li, S.J., et al.: Intelligent and concurrent analytic platform for renewable energy policy assessment using open data resources. In: Moving Integrated Product Development to Service Clouds in the Global Economy, pp. 781–789 (2014)

    Google Scholar 

  29. Kramers, L., Van Wees, J.-D., Pluymaekers, M.P.D., Kronimus, A., Boxem, T.: Direct heat resource assessment and subsurface information systems for geothermal aquifers; the Dutch perspective. Netherlands J. Geosci. 91(4), 637–649 (2012)

    Article  Google Scholar 

  30. Schiel, K., Baume, O., Caruso, G., Leopold, U.: GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas. Renew. Energy 86, 1023–1036 (2016)

    Article  Google Scholar 

  31. Miller, C.: Predicting success of energy savings interventions and industry type using smart meter and retrofit data from thousands of non-residential buildings. In: Proceedings of the 4th ACM International Conference on Systems for Energy-Efficient Built Environments, p. 17 (2017)

    Google Scholar 

  32. Truong, N.B., Cao, Q.H., Um, T.-W., Lee, G.M.: Leverage a trust service platform for data usage control in smart city. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7 (2016)

    Google Scholar 

  33. Li, R., Crowe, J., Leifer, D., Zou, L., Schoof, J.: Beyond big data: social media challenges and opportunities for understanding social perception of energy. Energy Res. Soc. Sci. 56, 101217 (2019)

    Article  Google Scholar 

  34. Matheus, R., Janssen, M., Maheshwari, D.: Data science empowering the public: data-driven dashboards for transparent and accountable decision-making in smart cities. Gov. Inf. Q. 37(3) (2020). https://doi.org/10.1016/j.giq.2018.01.006

  35. Henrich, B., Hoppe, T., Diran, D., Lukszo, Z.: The use of energy models in local heating transition decision making: insights from ten municipalities in The Netherlands. Energies 14(2), 423 (2021)

    Article  Google Scholar 

  36. Schlegel, K., Sallam, R.L., Yuen, D., Tapadinhas, J.: Magic Quadrant for Business Intelligence and Analytics Platforms. Gartner (2013)

    Google Scholar 

  37. Eden, L., Wagstaff, M.F.: Evidence-based policymaking and the wicked problem of SDG 5 Gender Equality. J. Int. Bus. Policy 4(1), 28–57 (2020). https://doi.org/10.1057/s42214-020-00054-w

    Article  Google Scholar 

  38. Berger, L., Bréchet, T., Pestiaux, J., van Steenberghe, V.: Case-study - the transition of Belgium towards a low carbon society: a macroeconomic analysis fed by a participative approach. Energy Strateg. Rev. 29 (2020). https://doi.org/10.1016/j.esr.2020.100463

  39. Diran, D., Henrich, B., Geerdink, T.: Supporting municipal energy transition decision-making (2020)

    Google Scholar 

  40. Diran, D., van Veenstra, A.F., Brus, C., Geerdink, T.: Data voor de Transitievisie Warmte en Wijkuitvoeringsplannen. Den Haag (2020)

    Google Scholar 

  41. Vringer, K., de Vries, R., Visser, H.: Measuring governing capacity for the energy transition of Dutch municipalities. Energy Policy 149 (2021). https://doi.org/10.1016/j.enpol.2020.112002

  42. Noori, N., Hoppe, T., de Jong, M.: Classifying pathways for smart city development: comparing design, governance and implementation in Amsterdam, Barcelona, Dubai, and Abu Dhabi. Sustainability 12(10), 4030 (2020)

    Article  Google Scholar 

  43. TheMAYOR.eu: UNESCO recognises Rotterdam as a digital pioneer (2021). https://www.themayor.eu/en/a/view/unesco-recognises-rotterdam-as-a-digital-pioneer-7702

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa Hoekstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diran, D., Hoekstra, M., van Veenstra, A.F. (2022). Applications of Data-Driven Policymaking in the Local Energy Transition: A Multiple-case Study in the Netherlands. In: Krimmer, R., et al. Electronic Participation. ePart 2022. Lecture Notes in Computer Science, vol 13392. Springer, Cham. https://doi.org/10.1007/978-3-031-23213-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23213-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23212-1

  • Online ISBN: 978-3-031-23213-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics