Skip to main content

In Situ Analysis and Visualization of Extreme-Scale Particle Simulations

  • Conference paper
  • First Online:
High Performance Computing. ISC High Performance 2022 International Workshops (ISC High Performance 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13387))

Included in the following conference series:

  • 761 Accesses

Abstract

In situ analysis has emerged as a dominant paradigm for performing scalable visual analysis of extreme-scale computational simulation data. Compared to the traditional post hoc analysis pipeline where data is first stored into disks and then analyzed offline, in situ analysis processes data at the time its generation in the supercomputers so that the slow and expensive disk I/O is minimized. In this work, we present a new in situ visual analysis pipeline for the extreme-scale multiphase flow simulation MFiX-Exa and demonstrate how the pipeline can be used to process large particle fields in situ and produce informative visualizations of the data features. We deploy our analysis pipeline on Oak Ridge’s Summit supercomputer to study its in situ applicability and usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Summit supercomputer. https://docs.olcf.ornl.gov/systems/summit_user_guide.html. Accessed 24 May 2022

  2. Ahern, S., Shoshani, A., Ma, K., Choudhary, A.: Scientific discovery at the exascale. Report from the DOE ASCR 2011 Workshop on Exascale Data Management. Analysis, and Visualization, February 2011

    Google Scholar 

  3. Ahrens, J., Jourdain, S., OLeary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis. In: SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 424–434 (2014). https://doi.org/10.1109/SC.2014.40

  4. AMReX: A software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications (2021). https://amrex-codes.github.io/amrex/index.html. Accessed 7 Apr 2021

  5. Atzori, M., et al.: In-situ visualization of large-scale turbulence simulations in nek5000 with paraview catalyst . https://doi.org/10.1007/s11227-021-03990-3

  6. Bauer, A.C., et al.: In situ methods, infrastructures, and applications on high performance computing platforms. Comput. Graph. Forum 35(3), 577–597 (2016). https://doi.org/10.1111/cgf.12930

    Article  Google Scholar 

  7. Biswas, A., Ahrens, J.P., Dutta, S., Musser, J.M., Almgren, A.S., Turton, T.L.: Feature analysis, tracking, and data reduction: an application to multiphase reactor simulation MFiX-Exa for In-Situ use case. Comput. Sci. Eng. 23(01), 75–82 (2021). https://doi.org/10.1109/MCSE.2020.3016927

  8. Camata, J.J., Silva, V., Valduriez, P., Mattoso, M., Coutinho, A.L.: In situ visualization and data analysis for turbidity currents simulation. Comput. Geosci. 110, 23–31 (2018). https://doi.org/10.1016/j.cageo.2017.09.013

    Article  Google Scholar 

  9. Childs, H.: Data exploration at the exascale. Supercomput. Front. Innov. 2(3) (2015). http://superfri.org/superfri/article/view/78

  10. Childs, H., et al.: A terminology for in situ visualization and analysis systems. Int. J. High Perform. Comput. Appl. 34(6), 676–691 (2020). https://doi.org/10.1177/1094342020935991

    Article  Google Scholar 

  11. Dutta, S., Chen, C., Heinlein, G., Shen, H.W., Chen, J.: In situ distribution guided analysis and visualization of transonic jet engine simulations. IEEE Trans. Vis. Comput. Graph. 23(1), 811–820 (2017)

    Article  Google Scholar 

  12. Optimizing a new technology to reduce power plant carbon dioxide emissions (2022). https://www.exascaleproject.org/optimizing-a-new-technology-to-reduce-power-plant-carbon-dioxide-emissions/. Accessed 3 Feb 2022

  13. Exascale Computing Project (2022). https://www.exascaleproject.org/. Accessed 12 Feb 2022

  14. Fabian, N., et al.: The ParaView coprocessing library: a scalable, general purpose in situ visualization library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 89–96 (2011). https://doi.org/10.1109/LDAV.2011.6092322

  15. Haimes, R.: pv3: a distributed system for large-scale unsteady cfd visualization. In: AIAA paper, pp. 94–0321 (1994)

    Google Scholar 

  16. He, W., et al.: Insitunet: deep image synthesis for parameter space exploration of ensemble simulations. IEEE Trans. Vis. Comput. Graph. 26(1), 23–33 (2020). https://doi.org/10.1109/TVCG.2019.2934312

    Article  Google Scholar 

  17. Larsen, M., et al.: The alpine in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, pp. 42–46. ISAV 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3144769.3144778

  18. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and integration for scientific codes through the adaptable IO system (ADIOS). In: Proceedings of the 6th International Workshop on Challenges of Large Applications in Distributed Environments, pp. 15–24. CLADE 2008, ACM (2008). https://doi.org/10.1145/1383529.1383533

  19. Lukasczyk, J., et al.: Cinema darkroom: a deferred rendering framework for large-scale datasets. In: 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV), pp. 37–41 (2020). https://doi.org/10.1109/LDAV51489.2020.00011

  20. MFIX-Exa (2022). https://amrex-codes.github.io/MFIX-Exa/docs_html/. Accessed 3 Feb 2022

  21. Musser, J., et al.: MFIX-Exa: a path toward exascale CFD-DEM simulations. Int. J. High Perform. Comput. Appl. (2021). https://doi.org/10.1177/10943420211009293

  22. Peterka, T., Croubois, H., Li, N., Rangel, S., Cappello, F.: Self-Adaptive Density Estimation of Particle Data. SIAM J. Sci. Comput. 38(5), S646–S666 (2016). SISC Special Edition on CSE’15: Software and Big Data

    Google Scholar 

  23. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object Oriented Approach to 3D Graphics, fourth edn. Kitware Inc. (2004). iSBN 1-930934-19-X

    Google Scholar 

  24. SENSEI: Scalable in situ analysis and visualization (2021). https://sensei-insitu.org/. Accessed 12 Feb 2022

  25. Tikhonova, A., Correa, C., Ma, K.L.: Explorable images for visualizing volume data. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 177–184 (2010). https://doi.org/10.1109/PACIFICVIS.2010.5429595

  26. Vishwanath, V., Hereld, M., Papka, M.E.: Toward simulation-time data analysis and i/o acceleration on leadership-class systems. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 9–14 (2011). https://doi.org/10.1109/LDAV.2011.6092178

  27. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, pp. 101–109. EGPGV 2011, Eurographics Association (2011). https://doi.org/10.2312/EGPGV/EGPGV11/101-109

  28. Woodring, J., Petersen, M., Schmei\(\beta \)er, A., Patchett, J., Ahrens, J., Hagen, H.: In situ eddy analysis in a high-resolution ocean climate model. IEEE Trans. Vis. Comput. Graph. 22(1), 857–866 (2016). https://doi.org/10.1109/TVCG.2015.2467411

  29. Yi, H., Rasquin, M., Fang, J., Bolotnov, I.A.: In-situ visualization and computational steering for large-scale simulation of turbulent flows in complex geometries. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 567–572 (2014). https://doi.org/10.1109/BigData.2014.7004275

  30. Zhang, W., Myers, A., Gott, K., Almgren, A., Bell, J.: Amrex: block-structured adaptive mesh refinement for multiphysics applications. Int. J. High Perform. Comput. Appl. 35(6), 508–526 (2021). https://doi.org/10.1177/10943420211022811

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Energy and Los Alamos National Laboratory for the funding and support in carrying out this research. This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We thank our many ECP collaborators especially Jordan Musser, Ann Almgren, and Patrick O’Leary. This research is released under LA-UR-22-21278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, S., Lipsa, D., Turton, T.L., Geveci, B., Ahrens, J. (2022). In Situ Analysis and Visualization of Extreme-Scale Particle Simulations. In: Anzt, H., Bienz, A., Luszczek, P., Baboulin, M. (eds) High Performance Computing. ISC High Performance 2022 International Workshops. ISC High Performance 2022. Lecture Notes in Computer Science, vol 13387. Springer, Cham. https://doi.org/10.1007/978-3-031-23220-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23220-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23219-0

  • Online ISBN: 978-3-031-23220-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics