Skip to main content

Active GA Accelerated by Simulated Annealing to Solve SPP in Packet Networks

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2022)

Abstract

This paper presents two approaches to deal with the shortest path problem (SPP) solution for routing network packets in an optimized way. The first one uses Simulated Annealing (SA), and the second one is a novel hybridization of the Genetic Algorithm with Dijkstra mutation accelerated by the SA (SGA). Also, two different case scenario configurations, each with 144 nodes, are employed to assess these two proposals, and the total time spent to fill out the routing tables, referring to the transmission of a packet from the initial to the destiny nodes, is measured. A statistical comparison is applied to identify differences among the algorithm’s solutions. Experiments and simulations have shown that the SGA presented competitive results compared to standard SA and can solve the problem with fast convergence, which makes us conclude that it can operate efficiently in actual computer networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fazli, F., Mansubbassiri, M.: V-RPL: an effective routing algorithm for low power and lossy networks using multi-criteria decision-making techniques. Ad Hoc Netw. 132, 102868 (2022)

    Article  Google Scholar 

  2. Yao, Y., Cao, Q., Vasilakos, A.V.: EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Trans. Netw. 23, 810–823 (2015)

    Article  Google Scholar 

  3. Anwar, N., Deng, H.: Ant colony optimization based multicast routing algorithm for mobile ad hoc networks. IEEE Adva. Wirel. Opti. Commun. (RTUWO) 1, 62–67 (2015)

    Google Scholar 

  4. Yadav, Rajiv, Indu, S.., Gupta, Daya: Review of evolutionary algorithms for energy efficient and secure wireless sensor networks. In: Khanna, Kavita, Estrela, Vania Vieira, Rodrigues, Joel José Puga Coelho. (eds.) Cyber Security and Digital Forensics. LNDECT, vol. 73, pp. 597–608. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3961-6_49

    Chapter  Google Scholar 

  5. Rovira-Sugranes, A., Razi, A., Afghah, F., Chakareski, J.: A review of AI-enabled routing protocols for UAV networks: trends, challenges, and future outlook. Ad Hoc Netw. 130, 102790 (2022)

    Article  Google Scholar 

  6. Lopez, A., Heisterkamp, D.R.: Simulated annealing based hierarchical Q-routing: a dynamic routing protocol. In: 2011 Eighth International Conference on Information Technology: New Generations, pp. 791–796 (2011)

    Google Scholar 

  7. Rovira-Sugranes, A., Afghah, F., Qu, J., Razi, A.: Fully-echoed Q-routing with simulated annealing inference for flying adhoc networks. IEEE Trans. Netw. Sci. Eng. 8(3), 2223–2234 (2021)

    Article  MathSciNet  Google Scholar 

  8. Wang, H., Li, K., Pedrycz, W.: A routing algorithm based on simulated annealing algorithm for maximising wireless sensor networks lifetime with a sink node. Int. J. Bio-Inspir. Comput. 15(4), 264–275 (2020)

    Article  Google Scholar 

  9. Zhao, L., Saldin, A., Hu, J., Fu, L., Shi, J., Guan, Y.: A novel simulated annealing based routing algorithm in F-SDNs. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1202–1207 (2020)

    Google Scholar 

  10. Raj, J.S., Rahimunnisa, K.: Hybridized genetic-simulated annealing algorithm for performance optimization in wireless ad-hoc network. J. Soft Comput. Paradig. 1(3), 1–13 (2019)

    Article  Google Scholar 

  11. Sundar, R., Kathirvel, A.: Aggressively delivered mechanism over variable length density using a simulated annealing algorithm in mobile ad hoc network. Trans. Emerg. Telecommun. Technol. 31(12), e3863 (2020)

    Google Scholar 

  12. Prasad, A.Y., Rayanki, B.: A generic algorithmic protocol approaches to improve network life time and energy efficient using combined genetic algorithm with simulated annealing in manet. Int. J. Intell. Unmanned Syst. 8(3), 23–42 (2020)

    Google Scholar 

  13. Hamed, A.: A genetic algorithm for finding the k shortest paths in a network. Egypt. Inform. J. 11, 75–79 (2010)

    Article  Google Scholar 

  14. Zhang, L., Cai, L., Li, M., Wang, F.: A method for least-cost QoS multicast routing based on genetic simulated annealing algorithm. Comput. Commun. 32, 105–110 (2009)

    Article  Google Scholar 

  15. Younes, A.: Multicast routing with bandwidth and delay constraints based on genetic algorithms. Egypt. Inform. J. 312, 107–114 (2011)

    Article  Google Scholar 

  16. Bhardwaj, A., El-Ocla, H.: Multipath routing protocol using genetic algorithm in mobile ad hoc networks. IEEE Access 8, 177534–177548 (2020)

    Article  Google Scholar 

  17. Wang, C., Liu, X., Hu, H., Han, Y., Yao, M.: Energy-efficient and load-balanced clustering routing protocol for wireless sensor networks using a chaotic genetic algorithm. IEEE Access 8, 158082–158096 (2020)

    Article  Google Scholar 

  18. Muruganantham, N., El-Ocla, H.: Routing using genetic algorithm in a wireless sensor network. Wirel. Pers. Commun. 111, 2703–2732 (2020)

    Article  Google Scholar 

  19. Singh, M., Amin, S., Choudhary, A.: Genetic algorithm based sink mobility for energy efficient data routing in wireless sensor networks. AEU Int. J. Electron. Commun. 131, 1–10 (2020)

    Google Scholar 

  20. Heidari, E., Movaghar, A., Motameni, H., Barzegar, B.: A novel approach for clustering and routing in WSN using genetic algorithm and equilibrium optimizer. Int. J. Commun. Syst., e5148 (2022)

    Google Scholar 

  21. Chu-hang, L., Xiao-li, W., You-jia, H., Huang-shui, H., Sha-sha, W.: An improved genetic algorithm based annulus-sector clustering routing protocol for wireless sensor networks. Wirel. Pers. Commun 123, 3623–3644 (2022)

    Article  Google Scholar 

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, H., Sun, B.: Multicast routing optimization algorithm with bandwidth and delay constraints based on GA. J. Commun. Comput. 2, 63–67 (2005)

    Google Scholar 

  24. Sorensen, K., Glover, F.W.: Metaheuristics. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, vol. 1, pp. 960–970. Springer, Boston (2013). https://doi.org/10.1007/978-1-4419-1153-7_1167

    Chapter  Google Scholar 

  25. Stockt, S., Engelbrecht, A.: Analysis of selection hyper-heuristics for population-based meta-heuristics in real-valued dynamic optimization. Swarm Evol. Comput. 43, 127–146 (2018)

    Article  Google Scholar 

  26. Nikolaev, A., Jacobson, S.: Simulated annealing. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 1–39. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_1

    Chapter  Google Scholar 

  27. Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3, 287–297 (1999)

    Article  Google Scholar 

  28. Kumar, R., Kumar, M.: Exploring genetic algorithm for shortest path optimization in data networks. Global J. Comput. Sci. Technol. 10, 1–5 (2010)

    Google Scholar 

  29. Montgomery, D., Runger, G.: Applied statistics and probability for engineers. LTC (2009)

    Google Scholar 

Download references

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754382. This research has also been partially supported by Comunidad de Madrid, PROMINT-CM project (grant ref: P2018/EMT-4366) and by the project PID2020-115454GB-C21 of the Spanish Ministry of Science and Innovation (MICINN). The authors thank UAH, UFRJ and CEFET-MG for the infrastructure, and Brazilian research agencies for partially support: CAPES (Finance Code 001), FAPERJ, FAPEMIG, and National Council for Scientific and Technological Development - CNPq. “The content of this publication does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel S. Fonseca , Elizabeth F. Wanner , Carolina G. Marcelino , Gabriel P. Silva , Silvia Jimenez-Fernandez or Sancho Salcedo-Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fonseca, D.S., Wanner, E.F., Marcelino, C.G., Silva, G.P., Jimenez-Fernandez, S., Salcedo-Sanz, S. (2022). Active GA Accelerated by Simulated Annealing to Solve SPP in Packet Networks. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23236-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23235-0

  • Online ISBN: 978-3-031-23236-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics