Skip to main content

Robust Cardiac MRI Segmentation with Data-Centric Models to Improve Performance via Intensive Pre-training and Augmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13593))

  • 899 Accesses

Abstract

Segmentation of anatomical structures from Cardiac Magnetic Resonance (CMR) is central to the non-invasive quantitative assessment of cardiac function and structure, and deep-learning-based automatic segmentation models prove to have satisfying performance. However, patients’ respiratory motion during the scanning process can greatly degenerate the quality of CMR images, resulting in a serious performance drop for deep learning algorithms. Building a robust cardiac MRI segmentation model is one of the keys to facilitating the use of deep learning in practical clinic scenarios. To this end, we experiment with several network architectures and compare their segmentation accuracy and robustness to respiratory motion. We further pre-train our network on large publicly available CMR datasets and augment our training set with adversarial augmentation, both methods bring significant improvement. We evaluate our methods on the cine MRI dataset of the CMRxMotion challenge and obtain promising performance for the segmentation of the left ventricle, left ventricular myocardium, and right ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulz-Menger, J., et al.: Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J. Cardiovasc. Magn. Reson. 22(1), 19 (2022). https://doi.org/10.1186/s12968-020-00610-6

  2. Alfakih, K., Plein, S., Thiele, H., Jones, T., Ridgway, J.P., Sivananthan, M.U.: Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J. Magn. Reson. Imaging 17(3), 323–329 (2003). https://doi.org/10.1002/jmri.10262

  3. Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–45 (2015). https://doi.org/10.1016/j.media.2015.08.009

  4. Bai, W., et al.: Biventricular surface reconstruction from cine MRI contours using point completion networks. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 105–109 (2021). https://doi.org/10.1109/ISBI48211.2021.9434040

  5. Chen, C., et al.: Enhancing MR image segmentation with realistic adversarial data augmentation. arXiv preprint (2022). https://arxiv.org/abs/2108.03429

  6. Corral Acero, J., et al.: SMOD - data augmentation based on statistical models of deformation to enhance segmentation in 2D cine cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 361–369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_39

    Chapter  Google Scholar 

  7. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations, pp. 1–23 (2017). https://arxiv.org/abs/1706.06083

  8. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation (2021). https://arxiv.org/abs/2105.05537

  9. Chen, C., et al.: Realistic adversarial data augmentation for MR image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part I. LNCS, vol. 12261, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_65

    Chapter  Google Scholar 

  10. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results, In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9300–9308 (2019). https://doi.org/10.1109/CVPR.2019.00953

  11. Liu, Z., et al.: Swin Transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3464–3473 (2021). https://doi.org/10.48550/arXiv.2103.14030

  12. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    Chapter  Google Scholar 

  13. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. LNCS, vol. 12962. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08999-2_22

  14. Isensee, F., Jaeger, P.F., Kohl, S.A.A., et al.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

  15. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018). https://doi.org/10.1109/TMI.2018.2837502

  16. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms Challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021). https://doi.org/10.1109/TMI.2021.3090082

  17. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019). https://doi.org/10.1109/TPAMI.2018.2869576

  18. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 581–588 (2016). https://doi.org/10.1007/978-3-319-46723-8_67

  19. Deng J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  20. Fulton, M.J., Heckman, C.R., Rentschler, M.E.: Deformable Bayesian convolutional networks for disease-robust cardiac MRI segmentation. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 296–305. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_32

    Chapter  Google Scholar 

  21. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014). https://doi.org/10.48550/arXiv.1411.1792

  22. Zhuang, F., et al.: A comprehensive survey on transfer learning. arXiv preprint (2019). https://arxiv.org/abs/1911.02685

  23. He, K., Girshick, R., Dollar, P.: Rethinking imagenet pre-training. arXiv preprint (2018). https://arxiv.org/abs/1811.08883

  24. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems, pp. 3347–3357 (2019). https://doi.org/10.48550/arXiv.1902.07208

  25. Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model robustness and uncertainty. In: Proceedings of the International Conference on Machine Learning (2019). https://doi.org/10.48550/arXiv.1901.09960

  26. Mathis, A., et al.: Pretraining boosts out-of-domain robustness for pose estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1859–1868 (2019). https://doi.org/10.48550/arXiv.1909.11229

  27. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20730–20740 (2022). https://doi.org/10.48550/arXiv.2111.14791

  28. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J. Cardiac MR Left Ventricle Segmentation Challenge (2009). https://hdl.handle.net/10380/3070

  29. Petitjean, C., Zuluaga, M.A., Bai, W., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015). https://doi.org/10.1016/j.media.2014.10.004

  30. Tobon-Gomez, C., Geers, A.J., Peters, J., et al.: Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Trans. Med. Imaging 34(7), 1460–1473 (2015). https://doi.org/10.1109/TMI.2015.2398818

  31. Second annual data science bowl: transforming how we diagnose heart disease (2015). https://www.kaggle.com/competitions/second-annual-data-science-bowl/overview

  32. Wang, S., Qin, C., Wang, C., Wang, K., Wang, H., Chen, C., et al.: The extreme cardiac MRI analysis challenge under respiratory motion (CMRxMotion). arXiv preprint (2022). https://doi.org/10.48550/arXiv.2210.06385

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhan Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, S., Lu, W., Xie, J., Zhang, X., Zhang, S., Dou, Q. (2022). Robust Cardiac MRI Segmentation with Data-Centric Models to Improve Performance via Intensive Pre-training and Augmentation. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics