Skip to main content

Ad-RMS: Adaptive Regional Motion Statistics for Feature Matching Filtering

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

Abstract

The Grid-based Motion Statistics (GMS) is a popular feature matching filtering method, and can effectively support 3D reconstruction systems such as ORB-SLAM and has been used effectively in many fields. However, the GMS divides the image into a certain number of grids with a fixed size, which cannot better reflect the feature information of the region. So that when large affine changes occur in the images, the grids cannot delineate a reasonable consistent region. Such a region division leads to errors and even failures in the subsequent process using the grid to reject error feature matching. As a consequence, this paper proposes an adaptive regional motion statistics method based on adaptive region division for region detection to replace the fixed grid division, which enhances the affine invariance of the feature matching filtering algorithm, and verifies the effectiveness of this paper's method through the precision experiments of feature matching and homography matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Q., Xi, X., Zhang, W., Yang, L., Hanajima, N.: Improved image matching algorithm based on LK optical flow and grid motion statistics. Int. J. Comput. Appl. T. 68(1), 49–57 (2022)

    Article  Google Scholar 

  2. Shi, Z., Wang, P., Cao, Q., Ding, C., Luo, T.: Misalignment-eliminated warping image stitching method with grid-based motion statistics matching. Multimed. Tools Appl. 81(8), 10723–10742 (2022)

    Article  Google Scholar 

  3. Lin, WY.D., Cheng, M., Lu, J., Yang, H., Do, M.N., Torr, P.: Bilateral functions for global motion modeling. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8692, pp. 341–356. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_23

  4. Bian, J.W., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 4181–4190. IEEE, Honolulu (2017)

    Google Scholar 

  5. Gan, Y., Zhong, J., Vong, C., Gan, Y., Zhong, J., Vong, C.: A novel copy-move forgery detection algorithm via feature label matching and hierarchical segmentation filtering. Inf. Process. Manag. 59(1), 102783 (2022)

    Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)

    Article  Google Scholar 

  8. Yu, G., Morel, J.M.: ASIFT: an algorithm for fully affine anvariant comparison. Image Process. Line 1, 11–38 (2011)

    Article  Google Scholar 

  9. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  10. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, VISAPP 2009, pp. 331–340. SciTePress, Lisboa (2009)

    Google Scholar 

  11. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  12. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

  13. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, pp. 220–226. IEEE, Washington (2005)

    Google Scholar 

  14. Barath, D., Noskova, J., Ivashechkin, M., Matas, J.: MAGSAC++, a fast, reliable and accurate robust estimator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR 2020, pp. 1304–1312. IEEE, Seattle (2020)

    Google Scholar 

  15. Jiang, X., Ma, J., Jiang, J., Guo, X.: Robust feature matching using spatial clustering with heavy outliers. IEEE Trans. Image Process. 29, 736–746 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, S., Lim, J., Suh, I.H.: Progressive feature matching: incremental graph construction and optimization. IEEE Trans. Image Process. 29, 6992–7005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maier, J., Humenberger, M., Murschitz, M., Zendel, O., Vincze, M.: Guided matching based on statistical optical flow for fast and robust correspondence analysis. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9911, pp. 101–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_7

  18. Lipman, Y., Yagev, S., Poranne, R., Jacobs, D.W., Basri, R.: Feature matching with bounded distortion. ACM Trans. Graph 33(3), 1–14 (2014)

    Article  MATH  Google Scholar 

  19. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  20. Li, Y., Li, L.: A split and merge EM algorithm for color image segmentation. In: Proceedings of International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, pp. 395–399. IEEE, Shanghai (2009)

    Google Scholar 

  21. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  22. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  23. Carevic, D., Caelli, T.: Region-based coding of color images using Karhunen-Loeve transform. Graph. Models Image Process. 59(1), 27–38 (1997)

    Article  Google Scholar 

  24. Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, vol. 5303, pp. 183–196. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_14

  25. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  26. Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K.M., Trulls, E.: Image matching across wide baselines: from paper to practice. Int. J. Comput. Vis. 129(2), 517–547 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foun-dation of China [grant numbers 61872291, 62172190], and The Innovation & Entre-preneurship Plan of Jiangsu Province (JSSCRC2021532).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Nan or Yinghui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nan, B., Wang, Y., Liang, Y., Wu, M., Qian, P., Lin, G. (2022). Ad-RMS: Adaptive Regional Motion Statistics for Feature Matching Filtering. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics