Skip to main content

High-Fidelity Dynamic Human Synthesis via UV-Guided NeRF with Sparse Views

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1190 Accesses

Abstract

In the field of dynamic human synthesis, some recent works try to decompose a non-rigidly deforming scene into a canonical neural radiance field and use a set of deformation fields for mapping observation-space points to the canonical space, thereby enabling them to learn the dynamic scene from images. Due to the highly under-constrained optimization cased by deformation field without prior and the insufficient of surface appearance information cased by sparse views, the rendering result exists obvious appearance artifacts. In this paper, to address the problem of artifacts, we present a novel method called UV-guided Neural Radiance Fields (UVNeRF), consisting of three modules: Canonical Space Mapping Module (CSMM), Texture Space Mapping Module (TSMM), UV-guided Neural Rendering Module (UVNRM). CSMM map observation-space points to the canonical space based 3D human skeletons which can regularize learning of the deformation field. TSMM map canonical-space points to the texture space for obtaining a rough human surface representation on the UV space as the extra information. UVNRM render the image result using the outputs of CSMM and TSMM. The experimental studies on Human3.6M and ZJU-MoCap dataset show that our approach gains noteworthy enhancements comparing recent dynamic human synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural point-based graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 696–712. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_42

    Chapter  Google Scholar 

  2. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1175–1186 (2019)

    Google Scholar 

  3. Davis, A., Levoy, M., Durand, F.: Unstructured light fields. Comput. Graph. Forum. 31, 305–314. Wiley Online Library (2012)

    Google Scholar 

  4. Gong, K., et al.: Instance-Level human parsing via part grouping network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 805–822. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_47

    Chapter  Google Scholar 

  5. Guo, H., Sheng, B., Li, P., Chen, C.P.: Multiview high dynamic range image synthesis using fuzzy broad learning system. IEEE Trans. Cybernet. 51(5), 2735–2747 (2019)

    Article  Google Scholar 

  6. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  7. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Google Scholar 

  8. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–172 (2000)

    Google Scholar 

  9. Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.: Towards unsupervised learning of generative models for 3D controllable image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5871–5880 (2020)

    Google Scholar 

  10. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graphics 40(6), 1–16 (2021)

    Google Scholar 

  11. Liu, L., et al.: Neural rendering and reenactment of human actor videos. ACM Trans. Graphics 38(5), 1–14 (2019)

    Article  Google Scholar 

  12. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)

  13. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)

    Article  Google Scholar 

  14. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  15. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)

    Google Scholar 

  16. Peng, S., Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)

    Google Scholar 

  17. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graphics 36(6), 1–11 (2017)

    Article  Google Scholar 

  18. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  19. Sheng, B., Li, P., Gao, C., Ma, K.L.: Deep neural representation guided face sketch synthesis. IEEE Trans. Visual Comput. Graphics 25(12), 3216–3230 (2018)

    Article  Google Scholar 

  20. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graphics (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  21. Vakalopoulou, M., et al.: AtlasNet: multi-atlas non-linear deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 658–666. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_75

    Chapter  Google Scholar 

  22. Weng, C.Y., Curless, B., Kemelmacher-Shlizerman, I.: Photo wake-up: 3D character animation from a single photo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5908–5917 (2019)

    Google Scholar 

  23. Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691 (2020)

    Google Scholar 

  24. Xie, Z., Zhang, W., Sheng, B., Li, P., Chen, C.P.: BaGFN: broad attentive graph fusion network for high-order feature interactions. IEEE Trans. Neural Netw. Learn. Syst. Early Access (2021)

    Google Scholar 

  25. Xu, L., Xu, W., Golyanik, V., Habermann, M., Fang, L., Theobalt, C.: EventCap: monocular 3d capture of high-speed human motions using an event camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4968–4978 (2020)

    Google Scholar 

  26. Zhang, B., Sheng, B., Li, P., Lee, T.Y.: Depth of field rendering using multilayer-neighborhood optimization. IEEE Trans. Visual Comput. Graphics 26(8), 2546–2559 (2019)

    Article  Google Scholar 

  27. Zhao, F., Yang, W., Zhang, J., Lin, P., Zhang, Y., Yu, J., Xu, L.: HumanNeRF: generalizable neural human radiance field from sparse inputs. arXiv preprint arXiv:2112.02789 (2021)

  28. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

Download references

Acknowledgements

This work was supported by the Shanghai Natural Science Foundation of China under Grant No. 19ZR1419100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Z., Wang, Z., Wang, S., Sun, Y., Ma, L. (2022). High-Fidelity Dynamic Human Synthesis via UV-Guided NeRF with Sparse Views. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics