Skip to main content

Research on Real-Time Forestry Pest Detection Based on Improved YOLOv5

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1370 Accesses

Abstract

Small object detection has always been a difficult point in the field of object detection. To achieve better detection performance of forestry pests, this paper proposes Mf-YOLOv5s. Based on YOLOv5s, we replace the PANet with M-BiFPN to explore the importance of different input features and add one more prediction head to enhance the detection of tiny pests. Then we insert the BoTR between backbone and neck to capture global contextual information by using self-attention mechanism. Furthermore, we use Copy-Pasting data augmentation strategy to expand the dataset, which can make the sample distribution evenly. We also add a D-CBAM to neck to explore the role of hybrid attention mechanism in small object detection. The experimental results show that the \(AP_{50}\) of Mf-YOLOv5s on the test set is 95.3%, which is 2.2% higher than YOLOv5s, the detection precision and recall are 2.9% and 3.1% higher, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ngugi, L.C., Abelwahab, M., Abo-Zahhad, M.: Recent advances in image processing techniques for automated leaf pest and disease recognition - a review. Inf. Process. Agric. 8, 27ā€“51 (2020)

    Google Scholar 

  2. Li, K., Zhu, J., Li, N.: Lightweight automatic identification and location detection model of farmland pests. Wirel. Commun. Mob. Comput. 2021, 1ā€“11 (2021)

    Article  Google Scholar 

  3. Patel, D.J., Bhatt, N.: Insect identification among deep learningā€™s meta-architectures using TensorFlow. Int. J. Eng. Adv. Technol. 9(1), 1910ā€“1914 (2019)

    Article  Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google Scholar 

  6. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28, pp. 91ā€“99 (2015)

    Google Scholar 

  7. Jiao, L., Dong, S., Zhang, S., Xie, C., Wang, H.: AF-RCNN: an anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 174, 105522 (2020)

    Article  Google Scholar 

  8. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  9. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)

  10. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998ā€“6008 (2017)

    Google Scholar 

  11. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759ā€“8768 (2018)

    Google Scholar 

  12. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  13. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  14. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379ā€“387 (2016)

    Google Scholar 

  15. Zhou, X., Wang, D., KrƤhenbĆ¼hl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  16. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627ā€“9636 (2019)

    Google Scholar 

  17. Lin, T.Y., DollĆ”r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117ā€“2125 (2017)

    Google Scholar 

  18. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781ā€“10790 (2020)

    Google Scholar 

  19. Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. arXiv preprint arXiv:1911.09516 (2019)

  20. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā€“19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  21. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  22. glenn jocher et al: YOLOv5 (2021). https://github.com/ultralytics/yolov5

  23. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  24. Zhu, X., Lyu, S., Wang, X., Zhao, Q.: TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2778ā€“2788 (2021)

    Google Scholar 

  25. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision ā€“ ECCV 2018. LNCS, vol. 11218, pp. 122ā€“138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  26. Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314ā€“1324 (2019)

    Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510ā€“4520 (2018)

    Google Scholar 

  28. Zha, M., Qian, W., Yi, W., Hua, J.: A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion. Entropy 23(12), 1587 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jipeng Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Tan, T., Deng, Y. (2022). Research on Real-Time Forestry Pest Detection Based on Improved YOLOv5. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics