Abstract
Small object detection has always been a difficult point in the field of object detection. To achieve better detection performance of forestry pests, this paper proposes Mf-YOLOv5s. Based on YOLOv5s, we replace the PANet with M-BiFPN to explore the importance of different input features and add one more prediction head to enhance the detection of tiny pests. Then we insert the BoTR between backbone and neck to capture global contextual information by using self-attention mechanism. Furthermore, we use Copy-Pasting data augmentation strategy to expand the dataset, which can make the sample distribution evenly. We also add a D-CBAM to neck to explore the role of hybrid attention mechanism in small object detection. The experimental results show that the \(AP_{50}\) of Mf-YOLOv5s on the test set is 95.3%, which is 2.2% higher than YOLOv5s, the detection precision and recall are 2.9% and 3.1% higher, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ngugi, L.C., Abelwahab, M., Abo-Zahhad, M.: Recent advances in image processing techniques for automated leaf pest and disease recognition - a review. Inf. Process. Agric. 8, 27ā51 (2020)
Li, K., Zhu, J., Li, N.: Lightweight automatic identification and location detection model of farmland pests. Wirel. Commun. Mob. Comput. 2021, 1ā11 (2021)
Patel, D.J., Bhatt, N.: Insect identification among deep learningās meta-architectures using TensorFlow. Int. J. Eng. Adv. Technol. 9(1), 1910ā1914 (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā778 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28, pp. 91ā99 (2015)
Jiao, L., Dong, S., Zhang, S., Xie, C., Wang, H.: AF-RCNN: an anchor-free convolutional neural network for multi-categories agricultural pest detection. Comput. Electron. Agric. 174, 105522 (2020)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998ā6008 (2017)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759ā8768 (2018)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379ā387 (2016)
Zhou, X., Wang, D., KrƤhenbĆ¼hl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627ā9636 (2019)
Lin, T.Y., DollĆ”r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117ā2125 (2017)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781ā10790 (2020)
Liu, S., Huang, D., Wang, Y.: Learning spatial fusion for single-shot object detection. arXiv preprint arXiv:1911.09516 (2019)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
glenn jocher et al: YOLOv5 (2021). https://github.com/ultralytics/yolov5
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Zhu, X., Lyu, S., Wang, X., Zhao, Q.: TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2778ā2788 (2021)
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision ā ECCV 2018. LNCS, vol. 11218, pp. 122ā138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Howard, A., et al.: Searching for MobileNetV3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314ā1324 (2019)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510ā4520 (2018)
Zha, M., Qian, W., Yi, W., Hua, J.: A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion. Entropy 23(12), 1587 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yu, J., Tan, T., Deng, Y. (2022). Research on Real-Time Forestry Pest Detection Based on Improved YOLOv5. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-23473-6_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23472-9
Online ISBN: 978-3-031-23473-6
eBook Packages: Computer ScienceComputer Science (R0)