Skip to main content

SlimFliud-Net: Fast Fluid Simulation Using Admm Pruning

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1441 Accesses

Abstract

While data-driven fluid simulation methods greatly replace the physics-based fluid solver and achieve high quality results, it is a challenge to get enough realistic effect with less time. The Huge neural network models brought by the complexity of fluid data need to calculate a large number of parameters from the convolutional and full-connected layers in the forward propagation process, which lead to very long inference time and cannot meet the real-time requirements. Our method is based on a structural pruning method to reduce the number of parameters of a general fluid neural network model that imposes the admm constraints on original loss on training process and removes the convlutional filters at a certain rate according to their importance. We show the high quality results for velocity field reconstruction and advancing time from reduced parameters using our pruned fluid model, which has only 30%–50% parameters of the original model and greatly improves the inference speed of the model. It is a big step towards high-accuracy real-time fluid simulation.

H. Xiang and S. Yu—contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, S., He, X., Zhu, B.: Learning physical constraints with neural projections. Adv. Neural. Inf. Process. Syst. 33, 5178–5189 (2020)

    Google Scholar 

  2. Wiewel, S., Kim, B., Azevedo, V.C., Solenthaler, B., Thuerey, N.: Latent space subdivision: stable and controllable time predictions for fluid flow. In: Computer Graphics Forum, vol. 39, pp. 15–25. Wiley Online Library (2020)

    Google Scholar 

  3. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. Graph. (TOG) 37(4), 1–15 (2018)

    Google Scholar 

  4. Ummenhofer, B., Prantl, L., Thuerey, N., Koltun, V.: Lagrangian fluid simulation with continuous convolutions. In: International Conference on Learning Representations (2020)

    Google Scholar 

  5. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep fluids: a generative network for parameterized fluid simulations (2018)

    Google Scholar 

  6. Chu, M., Thuerey, N., Seidel, H.P., Theobalt, C., Zayer, R.: Learning meaningful controls for fluids. ACM Trans. Graph. 40(4), 1–13 (2021)

    Article  Google Scholar 

  7. Zhang, T., Ye, S., Zhang, Y., Wang, Y., Fardad, M.: Systematic weight pruning of DNNs using alternating direction method of multipliers (2018)

    Google Scholar 

  8. Bridson, R.: Fluid Simulation for Computer Graphics. AK Peters/CRC Press (2015)

    Google Scholar 

  9. Foster, N., Metaxas, D.N.: Controlling fluid animation. In: Computer Graphics International Conference, CGI 1997, Hasselt and Diepenbeek, Belgium, 23–27 June 1997, pp. 178–188. IEEE Computer Society (1997). https://doi.org/10.1109/CGI.1997.601299

  10. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128 (1999)

    Google Scholar 

  11. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chentanez, N., Müller, M.: Real-time Eulerian water simulation using a restricted tall cell grid. In: ACM Siggraph 2011 Papers, pp. 1–10 (2011)

    Google Scholar 

  13. Zhu, B., Lu, W., Cong, M., Kim, B., Fedkiw, R.: A new grid structure for domain extension. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Article  MATH  Google Scholar 

  14. Xiao, Y., Chan, S., Wang, S., Zhu, B., Yang, X.: An adaptive staggered-tilted grid for incompressible flow simulation. ACM Trans. Graph. (TOG) 39(6), 1–15 (2020)

    Article  Google Scholar 

  15. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (TOG) 32(4), 1–12 (2013)

    Article  MATH  Google Scholar 

  16. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 154–159. Citeseer (2003)

    Google Scholar 

  17. Cornelis, J., Ihmsen, M., Peer, A., Teschner, M.: IISPH-FLIP for incompressible fluids. In: Computer Graphics Forum, vol. 33, pp. 255–262. Wiley Online Library (2014)

    Google Scholar 

  18. Bender, J., Koschier, D.: Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Visual Comput. Graph. 23(3), 1193–1206 (2016)

    Article  Google Scholar 

  19. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)

    Article  Google Scholar 

  20. Harlow, F.H.: The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (1962)

    Google Scholar 

  21. Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 1–10 (2015)

    MATH  Google Scholar 

  23. Fu, C., Guo, Q., Gast, T., Jiang, C., Teran, J.: A polynomial particle-in-cell method. ACM Trans. Graph. (TOG) 36(6), 1–12 (2017)

    Google Scholar 

  24. Chen, Q., Wang, Y., Wang, H., Yang, X.: Data-driven simulation in fluids animation: a survey. Virtual Reality Intell. Hardw. 3(2), 87–104 (2021)

    Article  Google Scholar 

  25. Chu, M., Thuerey, N.: Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  26. Ladickỳ, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations using regression forests. ACM Trans. Graph. (TOG) 34(6), 1–9 (2015)

    Article  Google Scholar 

  27. Stanton, M., Humberston, B., Kase, B., O’Brien, J.F., Fatahalian, K., Treuille, A.: Self-refining games using player analytics. ACM Trans. Graph. (TOG) 33(4), 1–9 (2014)

    Article  Google Scholar 

  28. Li, Y., Wu, J., Tedrake, R., Tenenbaum, J.B., Torralba, A.: Learning particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint arXiv:1810.01566 (2018)

  29. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks. In: International Conference on Machine Learning, pp. 8459–8468. PMLR (2020)

    Google Scholar 

  30. Schenck, C., Fox, D.: SPNets: differentiable fluid dynamics for deep neural networks. In: Conference on Robot Learning, pp. 317–335. PMLR (2018)

    Google Scholar 

  31. Yang, C., Yang, X., Xiao, X.: Data-driven projection method in fluid simulation. Comput. Animat. Virtual Worlds 27(3–4), 415–424 (2016)

    Article  Google Scholar 

  32. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian fluid simulation with convolutional networks. In: International Conference on Machine Learning, pp. 3424–3433. PMLR (2017)

    Google Scholar 

  33. Chu, J., Zafar, N.B., Yang, X.: A schur complement preconditioner for scalable parallel fluid simulation. ACM Trans. Graph. (TOG) 36(4), 1 (2017)

    Article  Google Scholar 

  34. Gao, M., et al.: GPU optimization of material point methods. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)

    Google Scholar 

  35. Cui, H., Zhang, H., Ganger, G.R., Gibbons, P.B., Xing, E.P.: GeePS: scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In: Proceedings of the Eleventh European Conference on Computer Systems, pp. 1–16 (2016)

    Google Scholar 

  36. McAdams, A., Sifakis, E., Teran, J.: A parallel multigrid poisson solver for fluids simulation on large grids. In: Symposium on Computer Animation, pp. 65–73 (2010)

    Google Scholar 

  37. Liu, H., Mitchell, N., Aanjaneya, M., Sifakis, E.: A scalable Schur-complement fluids solver for heterogeneous compute platforms. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  38. Jung, H.R., Kim, S.T., Noh, J., Hong, J.M.: A heterogeneous CPU-GPU parallel approach to a multigrid poisson solver for incompressible fluid simulation. Comput. Animat. Virtual Worlds 24(3–4), 185–193 (2013)

    Article  Google Scholar 

  39. Lentine, M., Zheng, W., Fedkiw, R.: A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Graph. (TOG) 29(4), 1–9 (2010)

    Article  Google Scholar 

  40. Hu, Y., Li, T.M., Anderson, L., Ragan-Kelley, J., Durand, F.: Taichi: a language for high-performance computation on spatially sparse data structures. ACM Trans. Graph. (TOG) 38(6), 1–16 (2019)

    Google Scholar 

  41. Hu, Y., et al.: DiffTaichi: differentiable programming for physical simulation. arXiv preprint arXiv:1910.00935 (2019)

  42. Treuille, A., Lewis, A., Popović, Z.: Model reduction for real-time fluids. ACM Trans. Graph. (TOG) 25(3), 826–834 (2006)

    Article  Google Scholar 

  43. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  44. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2234–2240. International Joint Conferences on Artificial Intelligence Organization (2018). https://doi.org/10.24963/ijcai.2018/309

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 62272298, 61872241 and 62077037, in part by Shanghai Municipal Science and Technology Major Project under Grant 2021SHZDZX0102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, H., Yu, S., Li, P., Li, W., Wu, E., Sheng, B. (2022). SlimFliud-Net: Fast Fluid Simulation Using Admm Pruning. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics