Skip to main content

Joint Matrix Factorization and Structure Preserving for Domain Adaptation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1103 Accesses

Abstract

Domain adaptation aims to learn robust classifiers for the target domain by transferring knowledge from the labeled source domain. However, most of the existing studies emphasize learning domain-invariant feature representations by employing distribution alignment on the feature space, which ignores the influence of data noise and structure knowledge. To address these issues, we propose a new domain adaptation approach, which can effectively reduce the impact of data noise and simultaneously thoroughly exploit the manifold data structures to transfer discriminative knowledge. Specifically, we jointly model matrix factorization, maximum entropy, distribution alignment in a unified framework, which can effectively alleviate the negative transfer of the outliers. Furthermore, we devise graph dual regularization to thoroughly explore the intrinsic manifold data structures, which can significantly reduce structure discrepancy across domains. Experimental results on various domain adaptation tasks demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caputo, B., et al.: ImageCLEF 2014: overview and analysis of the results. In: Kanoulas, E., et al. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 192–211. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11382-1_18

    Chapter  Google Scholar 

  2. Csurka, G., Chidlowskii, B., Clinchant, S., Michel, S.: Unsupervised domain adaptation with regularized domain instance denoising. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 458–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_37

    Chapter  Google Scholar 

  3. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 59:1–59:35 (2016)

    Google Scholar 

  4. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp. 2066–2073. IEEE Computer Society (2012)

    Google Scholar 

  5. Guo, X., Lin, Z.: Low-rank matrix recovery via robust outlier estimation. IEEE Trans. Image Process. 27(11), 5316–5327 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, J., Jing, M., Lu, K., Zhu, L., Shen, H.T.: Locality preserving joint transfer for domain adaptation. IEEE Trans. Image Process. 28(12), 6103–6115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, J., Lu, K., Huang, Z., Zhu, L., Shen, H.T.: Transfer independently together: a generalized framework for domain adaptation. IEEE Trans. Cybern. 49(6), 2144–2155 (2019)

    Article  Google Scholar 

  8. Li, S., Song, S., Huang, G., Ding, Z., Wu, C.: Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans. Image Process. 27(9), 4260–4273 (2018)

    Article  MathSciNet  Google Scholar 

  9. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS, pp. 612–620 (2011)

    Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML. JMLR Workshop and Conference Proceedings, vol. 37, pp. 97–105. JMLR.org (2015)

    Google Scholar 

  11. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS, pp. 1647–1657 (2018)

    Google Scholar 

  12. Long, M., Wang, J., Ding, G., Shen, D., Yang, Q.: Transfer learning with graph co-regularization. IEEE Trans. Knowl. Data Eng. 26(7), 1805–1818 (2014)

    Article  Google Scholar 

  13. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: ICCV, pp. 2200–2207. IEEE Computer Society (2013)

    Google Scholar 

  14. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410–1417. IEEE Computer Society (2014)

    Google Scholar 

  15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML. Proceedings of Machine Learning Research, vol. 70, pp. 2208–2217. PMLR (2017)

    Google Scholar 

  16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  17. Roy, S., Siarohin, A., Sangineto, E., Bulò, S.R., Sebe, N., Ricci, E.: Unsupervised domain adaptation using feature-whitening and consensus loss. In: CVPR, pp. 9471–9480. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  18. Song, P., Ou, S., Zheng, W., Jin, Y., Zhao, L.: Speech emotion recognition using transfer non-negative matrix factorization. In: ICASSP, pp. 5180–5184. IEEE (2016)

    Google Scholar 

  19. Sun, J., Wang, Z., Wang, W., Li, H., Sun, F.: Domain adaptation with geometrical preservation and distribution alignment. Neurocomputing 454, 152–167 (2021)

    Article  Google Scholar 

  20. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5385–5394. IEEE Computer Society (2017)

    Google Scholar 

  21. Wang, J., Chen, Y., Yu, H., Huang, M., Yang, Q.: Easy transfer learning by exploiting intra-domain structures. In: ICME, pp. 1210–1215. IEEE (2019)

    Google Scholar 

  22. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: ACM Multimedia, pp. 402–410. ACM (2018)

    Google Scholar 

  23. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: ICCV, pp. 1426–1435. IEEE (2019)

    Google Scholar 

  24. Xu, Y., Fang, X., Wu, J., Li, X., Zhang, D.: Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans. Image Process. 25(2), 850–863 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: CVPR, pp. 5150–5158. IEEE Computer Society (2017)

    Google Scholar 

  26. Zhang, L.: Transfer adaptation learning: A decade survey. CoRR abs/1903.04687 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62172109 and Grant 62072118, in part by the Natural Science Foundation of Guangdong Province under Grant 2022A1515010322, in part by the High-Level Talents Programme of Guangdong Province under Grant 2017GC010556, and in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021B1515120010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, W., Chen, H., Meng, M., Wu, J. (2022). Joint Matrix Factorization and Structure Preserving for Domain Adaptation. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics