Skip to main content

Unsupervised Pose Estimation by Means of an Innovative Vision Transformer

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

Attention-only Transformers [34] have been applied to solve Natural Language Processing (NLP) tasks and Computer Vision (CV) tasks. One particular Transformer architecture developed for CV is the Vision Transformer (ViT) [15]. ViT models have been used to solve numerous tasks in the CV area. One interesting task is the pose estimation of a human subject. We present our modified ViT model, Un-TraPEs (UNsupervised TRAnsformer for Pose Estimation), that can reconstruct a subject’s pose from its monocular image and estimated depth. We compare the results obtained with such a model against a ResNet [17] trained from scratch and a ViT finetuned to the task and show promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Images are augmented via random drops, random replace, color distortion, blurring, and grey-scaling.

  2. 2.

    In the original paper, this value could be specified arbitrarily or even randomly per pixel. In our application, however, we want to simulate an occluded subject, so the user mask would reflect this as implemented.

  3. 3.

    The number of patches is determined by the size of each patch and the dimension of the image; as we have set the size of a patch to \(16\times 16\) pixels, we end up with 300 patches.

  4. 4.

    This has no repercussion on the estimation of the pose as the skeleton is normalized before any transformation and denormalized only when showing the prediction on image.

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005, pp. 408–416 (2005)

    Google Scholar 

  3. Atito, S., Awais, M., Kittler, J.: SIT: self-supervised vision transformer (2021)

    Google Scholar 

  4. Avanzato, R., Beritelli, F., Russo, M., Russo, S., Vaccaro, M.: Yolov3-based mask and face recognition algorithm for individual protection applications, vol. 2768, pp. 41–45 (2020)

    Google Scholar 

  5. Baldi, T.L., Farina, F., Garulli, A., Giannitrapani, A., Prattichizzo, D.: Upper body pose estimation using wearable inertial sensors and multiplicative Kalman filter. IEEE Sens. J. 20(1), 492–500 (2019)

    Article  Google Scholar 

  6. Brandizzi, N., Bianco, V., Castro, G., Russo, S., Wajda, A.: Automatic RGB inference based on facial emotion recognition, vol. 3092, pp. 66–74 (2021)

    Google Scholar 

  7. Capizzi, G., Lo Sciuto, G., Napoli, C., Tramontana, E., Wozniak, M.: A novel neural networks-based texture image processing algorithm for orange defects classification. Int. J. Comput. Sci. Appl. 13(2), 45–60 (2016)

    Google Scholar 

  8. Chalearn: Montalbano v2 dataset, eCCV 2014 (2014)

    Google Scholar 

  9. Chen, M., et al.: Generative pretraining from pixels. In: International Conference on Machine Learning, pp. 1691–1703. PMLR (2020)

    Google Scholar 

  10. Chen, W., et al.: A survey on hand pose estimation with wearable sensors and computer-vision-based methods. Sensors 20(4), 1074 (2020)

    Article  Google Scholar 

  11. Chithrananda, S., Grand, G., Ramsundar, B.: Chemberta: large-scale self-supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885 (2020)

  12. Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M.J.: Monocular expressive body regression through body-driven attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 20–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_2

    Chapter  Google Scholar 

  13. Das, S., Kishore, P.S.R., Bhattacharya, U.: An end-to-end framework for unsupervised pose estimation of occluded pedestrians. In: 2020 IEEE International Conference on Image Processing (ICIP) (2020)

    Google Scholar 

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  16. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition . In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  18. Honari, S., Constantin, V., Rhodin, H., Salzmann, M., Fua, P.: Unsupervised learning on monocular videos for 3D human pose estimation (2021)

    Google Scholar 

  19. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning (2021)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, A.T., Li, S.W., Lee, H.Y.: Tera: self-supervised learning of transformer encoder representation for speech. arXiv preprint arXiv:2007.06028 (2020)

  22. Liu, J., Wang, G., Hu, P., Duan, L.Y., Kot, A.C.: Global context-aware attention LSTM networks for 3D action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1647–1656 (2017)

    Google Scholar 

  23. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  24. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  25. Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Intriguing properties of vision transformers. arXiv preprint arXiv:2105.10497 (2021)

  26. Peng, X.B., Abbeel, P., Levine, S., van de Panne, M.: Deepmimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Google Scholar 

  27. Perla, S., Das, S., Mukherjee, P., Bhattacharya, U.: Cluenet: a deep framework for occluded pedestrian pose estimation. In: 30th British Machine Vision Conference, pp. 1–15 (2019)

    Google Scholar 

  28. Rhodin, H., Salzmann, M., Fua, P.: Unsupervised geometry-aware representation for 3D human pose estimation (2018)

    Google Scholar 

  29. Sigal, L., Black, M.J.: Humaneva: synchronized video and motion capture dataset for evaluation of articulated human motion. Brown Univertsity TR 120(2) (2006)

    Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  Google Scholar 

  31. Starczewski, J.T., Pabiasz, S., Vladymyrska, N., Marvuglia, A., Napoli, C., Woźniak, M.: Self organizing maps for 3D face understanding. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 210–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_19

    Chapter  Google Scholar 

  32. Starke, S., Zhao, Y., Zinno, F., Komura, T.: Neural animation layering for synthesizing martial arts movements. ACM Trans. Graph. (TOG) 40(4), 1–16 (2021)

    Article  Google Scholar 

  33. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  35. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016)

    Google Scholar 

  36. Wozniak, M., Polap, D., Kosmider, L., Napoli, C., Tramontana, E.: A novel approach toward X-ray images classifier, pp. 1635–1641 (2015). https://doi.org/10.1109/SSCI.2015.230

  37. Wozniak, M., Polap, D., Napoli, C., Tramontana, E.: Graphic object feature extraction system based on cuckoo search algorithm. Expert Syst. Appl. 66, 20–31 (2016). https://doi.org/10.1016/j.eswa.2016.08.068

    Article  Google Scholar 

  38. Xie, Z., et al.: Self-supervised learning with swin transformers. arXiv preprint arXiv:2105.04553 (2021)

  39. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation (2017)

    Google Scholar 

  40. Zhou, Y., Habermann, M., Habibie, I., Tewari, A., Theobalt, C., Xu, F.: Monocular real-time full body capture with inter-part correlations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4811–4822 (2021)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the HERMES (WIRED) project within Sapienza University of Rome Big Research Projects Grant framework 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Napoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandizzi, N. et al. (2023). Unsupervised Pose Estimation by Means of an Innovative Vision Transformer. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23480-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23479-8

  • Online ISBN: 978-3-031-23480-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics