Skip to main content

Identifying Cannabis Use Risk Through Social Media Based on Deep Learning Methods

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13589))

Included in the following conference series:

Abstract

Cannabis is the most used drug around the world with the highest risks and associated criminal problems in many countries. This research describes the process of classifying online posts to identify cannabis use problems and their associated risks as early as possible. We annotated 11,008 online posts, which we used to build robust classification models. We tested classical and deep learning classifiers. Different CNN- and RNN-based models proved to be promising approaches to detect cannabis use posts. Our system can be used by authorities (such as parents or doctors) to monitor cannabis use-related posts. It could raise an alarm to the relevant authorities to take necessary interventions to analyze the cannabis use risks associated with the posts. To the best of our knowledge, this is the first study that uses deep learning methods successfully to detect cannabis use from any text or online posts. We tested our deep learning models on the SubUse-Cann unseen dataset which contains 17,099 tweets. It is an imbalanced dataset with only 6.9% positive cannabis use tweets. Our CNN-based model performed the best with an accuracy of 95.25% and an F1-score of 92.83% for classifying cannabis use.

Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UNODC World Drug Report 2020 https://www.unodc.org/unodc/press/releases/2020/June/media-advisory---global-launch-of-the-2020-world-drug-report.html.

  2. 2.

    Scikit-learn 1.0.1 2021: https://scikit-learn.org/stable/supervised_learning.html.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bansal, D., Chhikara, R., Khanna, K., Gupta, P.: Comparative analysis of various machine learning algorithms for detecting dementia. Procedia Comput. Sci. 132, 1497–1502 (2018).. https://doi.org/10.1016/j.procs.2018.05.102

  3. Bergman, B.G., Dumas, T.M., Maxwell-Smith, M.A., Davis, J.P.: Instagram participation and substance use among emerging adults: the potential perils of peer belonging. Cyberpsychol., Behav. Soc. Netw. 21(12), 753–760 (2018)

    Article  Google Scholar 

  4. Çöltekin, Ç., Rama, T.: Drug-use identification from tweets with word and character n-grams. In: Proceedings of the EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task, pp. 52–53 (2018)

    Google Scholar 

  5. Cox, M.J., Janssen, T., Gabrielli, J., Jackson, K.M.: Profiles of parenting in the digital age: associations with adolescent alcohol and marijuana use. J. Stud. Alcohol Drugs 82(4), 460–469 (2021)

    Article  Google Scholar 

  6. Derczynski, L., et al.: Analysis of named entity recognition and linking for tweets. Inf. Process. Manag. 51(2), 32–49 (2015)

    Article  Google Scholar 

  7. Fischer, B., Russell, C., Sabioni, P., Van Den Brink, W., Le Foll, B., Hall, W., Rehm, J., Room, R.: Lower-risk cannabis use guidelines: a comprehensive update of evidence and recommendations. Am. j. Public Health 107(8), e1–e12 (2017)

    Article  Google Scholar 

  8. George, M.J., Ehrenreich, S.E., Burnell, K., Kurup, A., Vollet, J.W., Underwood, M.K.: Emerging adults’ public and private discussions of substance use on social media. Emerg. Adulthood 9(4), 408–414 (2021)

    Article  Google Scholar 

  9. Hassanpour, S., Tomita, N., DeLise, T., Crosier, B., Marsch, L.A.: Identifying substance use risk based on deep neural networks and instagram social media data. Neuropsychopharmacology 44(3), 487–494 (2019)

    Article  Google Scholar 

  10. Hu, H., et al.: An insight analysis and detection of drug-abuse risk behavior on Twitter with self-taught deep learning. Comput. Soc. Netw. 6(1), 1–19 (2019)

    Article  Google Scholar 

  11. Hu, H., et al.: An ensemble deep learning model for drug abuse detection in sparse twitter-sphere. In: MedInfo, pp. 163–167 (2019)

    Google Scholar 

  12. Jenhani, F., Gouider, M.S., Said, L.B.: Lexicon-based system for drug abuse entity extraction from twitter. In: BDAS, pp. 692–703 (2016)

    Google Scholar 

  13. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Koratana, A., Dredze, M., Chisolm, M.S., Johnson, M.W., Paul, M.J.: Studying anonymous health issues and substance use on college campuses with YIK yak. In: AAAI Workshop: WWW and Population Health Intelligence (2016)

    Google Scholar 

  16. Mahata, D., Friedrichs, J., Shah, R.R., et al.: # phramacovigilance-exploring deep learning techniques for identifying mentions of medication intake from twitter. arXiv preprint arXiv:1805.06375 (2018)

  17. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp. 55–60 (2014)

    Google Scholar 

  18. Menon, A., Farmer, F., Whalen, T., Hua, B., Najib, K., Gerber, M.: Automatic identification of alcohol-related promotions on twitter and prediction of promotion spread. In: 2014 Systems and Information Engineering Design Symposium (SIEDS), pp. 233–238. IEEE (2014)

    Google Scholar 

  19. Orabi, A.H., Buddhitha, P., Orabi, M.H., Inkpen, D.: Deep learning for depression detection of twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pp. 88–97 (2018)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  Google Scholar 

  21. Pennebaker, J.W., Chung, C.K.: Expressive writing: connections to physical and mental health. In: Friedman, H.S. (ed.) The Oxford Handbook Of Health Psychology, pp. 417–437. Oxford University Press (2011)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. Association for Computational Linguistics, Doha, Qatar (October2014). https://doi.org/10.3115/v1/D14-1162,https://www.aclweb.org/anthology/D14-1162

  23. Raja, B.S., Ali, A., Ahmed, M., Khan, A., Malik, A.P.: Semantics enabled role based sentiment analysis for drug abuse on social media: a framework. In: 2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 206–211. IEEE (2016)

    Google Scholar 

  24. Sarker, A., O’Connor, K., Ginn, R., Scotch, M., Smith, K., Malone, D., Gonzalez, G.: Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from twitter. Drug Safety 39(3), 231–240 (2016)

    Article  Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Rese. 15(1), 1929–1958 (2014)

    MATH  Google Scholar 

  26. Vázquez, A.L., et al.: Innovative identification of substance use predictors: machine learning in a national sample of Mexican children. Prevent. Sci. 21(2), 171–181 (2020)

    Google Scholar 

  27. Yadav, S., et al.: “When they say weed causes depression, but it’s your fav antidepressant’’: knowledge-aware attention framework for relationship extraction. PLoS one 16(3), e0248299 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Ontario Centres of Excellence (OCE), and SafeToNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, D., Inkpen, D., Osman, H.A. (2023). Identifying Cannabis Use Risk Through Social Media Based on Deep Learning Methods. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23480-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23479-8

  • Online ISBN: 978-3-031-23480-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics