Skip to main content

Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning Models

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

The shear slowness well-log is a fundamental feature used in reservoir modeling, geomechanics, elastic properties, and borehole stability. This data is indirectly measured by well-logs and assists the geological, petrophysical, and geophysical subsurface characterization. However, the acquisition of shear slowness is not a standard procedure in the well-logging program, especially in mature fields that have a limited logging scope. In this research, we propose to develop machine learning models to create synthetic shear slowness well-logs to fill this gap. We used standard well-log features such as natural gamma-ray, density log, neutron porosity, resistivity logs, and compressional slowness as input data to train the models, and successfully predicted a synthetic shear slowness well-log. Additionally, we created five supervised models using Neural Networks, AdaBoost, XGBoost, and CatBoost algorithms. Among all models created, the neural network algorithm provided the most optimized model, using multi-layer perceptron architecture reaching impressive scores as R\(^2\) of 0.9306, adjusted R\(^2\) of 0.9304, and MSE less than 0.0694.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adankon, M.M., Cheriet, M., et al.: Support vector machine (2009)

    Google Scholar 

  2. Baouche, R., Sen, S., Ganguli, S.S., Feriel, H.A.: Petrophysical, geomechanical and depositional environment characterization of the triassic tagi reservoir from the hassi berkine south field, berkine basin, southeastern algeria. J. Natural Gas Sci. Eng. 92, 104002 (2021)

    Article  Google Scholar 

  3. Bruhn, C.H., Pinto, A.C., Johann, P.R., Branco, C., Salomão, M.C., Freire, E.B.: Campos and santos basins: 40 years of reservoir characterization and management of shallow-to ultra-deep water, post-and pre-salt reservoirs-historical overview and future challenges. In: OTC Brasil. OnePetro (2017)

    Google Scholar 

  4. Castagna, J., Batzle, M., Eastwood, R.: Relationships between compressional-wave in elastic silicate rocks and shear-wave velocities. Geophysics 50(4), 571–581 (1985)

    Article  Google Scholar 

  5. Eberhart-Phillips, D., Han, D.H., Zoback, M.: Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54(1), 82–89 (1989)

    Article  Google Scholar 

  6. Ellis, Darwin V., Singer, Julian M.: Multi-array and triaxial induction devices. In: Ellis, Darwin V., Singer, Julian M. (eds.) Well Logging for Earth Scientists, pp. 179–212. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-4602-5_8

    Chapter  Google Scholar 

  7. Ellis, Darwin V., Singer, Julian M. (eds.): Well Logging for Earth Scientists. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-4602-5

    Book  Google Scholar 

  8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine 1 function estimation 2 numerical optimization in function space. North 1(3), 1–10 (1999)

    Google Scholar 

  9. Government, B.: Anp estabelece prazo para a petrobras finalizar a cessão de campos em desinvestimento. https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/noticias-comunicados/anp-estabelece-prazo-para-a-petrobras-finalizar-a-cessao-de-campos-em-desinvestimento (2018)

  10. Government, B.: Canto do amaro. https://www.gov.br/anp/pt-br/assuntos/exploracao-e-producao-de-oleo-e-gas/gestao-de-contratos-de-e-p/fase-de-producao/pd/canto_do_amaro.pdf (2018)

  11. Government, B.: Acesso gratuito aos dados pÚblicos terrestres. https://reate.cprm.gov.br/anp/TERRESTRE (may 2021)

  12. Johnston, J., Christensen, N.: Compressional to shear velocity ratios in sedimentary rocks. In: International journal of rock mechanics and mining sciences & geomechanics abstracts. vol. 30, pp. 751–754. Elsevier (1993)

    Google Scholar 

  13. Liu, L., Özsu, M.T.: Encyclopedia of database systems, vol. 6. Springer (2009). https://doi.org/10.1007/978-0-387-39940-9

  14. Mahmoud, A.A., Elkatatny, S., Al Shehri, D.: Application of machine learning in evaluation of the static young’s modulus for sandstone formations. Sustainability 12(5), 1880 (2020)

    Article  Google Scholar 

  15. Mancinelli, P., Scisciani, V.: Seismic velocity-depth relation in a siliciclastic turbiditic foreland basin: a case study from the central adriatic sea. Marine Petrol. Geol. 120, 104554 (2020)

    Article  Google Scholar 

  16. Miikkulainen, R.: Topology of a neural network (2010)

    Google Scholar 

  17. de Oliveira, L.A.B., de Carvalho Carneiro, C.: Synthetic geochemical well logs generation using ensemble machine learning techniques for the brazilian pre-salt reservoirs. J. Petrol. Sci. Eng. 196, 108080 (2021)

    Google Scholar 

  18. Onalo, D., Adedigba, S., Khan, F., James, L.A., Butt, S.: Data driven model for sonic well log prediction. J. Petrol. Sci. Eng. 170, 1022–1037 (2018)

    Article  Google Scholar 

  19. Ramcharitar, K., Hosein, R.: Rock mechanical properties of shallow unconsolidated sandstone formations. In: SPE Trinidad and Tobago Section Energy Resources Conference. OnePetro (2016)

    Google Scholar 

  20. Rider, M., Kennedy, M.: The geological interpretation of well logs: Rider-french consulting limited (2011)

    Google Scholar 

  21. Rubo, R.A., de Carvalho Carneiro, C., Michelon, M.F., dos Santos Gioria, R.: Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. J. Petrol. Sci. Eng. 183, 106382 (2019)

    Article  Google Scholar 

  22. Sammut, C., Webb, G.I.: Encyclopedia of machine learning. Springer Science & Business Media (2011). https://doi.org/10.1007/978-0-387-30164-8

  23. Song, S., Hou, J., Dou, L., Song, Z., Sun, S.: Geologist-level wireline log shape identification with recurrent neural networks. Comput. Geosci. 134, 104313 (2020)

    Article  Google Scholar 

  24. Ukil, A.: Support vector machine. In: Intelligent Systems and Signal Processing in Power Engineering, pp. 161–226. Springer (2007)

    Google Scholar 

  25. Valentín, M.B., et al: Estimation of permeability and effective porosity logs using deep autoencoders in borehole image logs from the brazilian pre-salt carbonate. J. Petrol. Sci. Eng. 170 315–330 (2018)

    Google Scholar 

  26. Wang, J., Cao, J., You, J., Cheng, M., Zhou, P.: A method for well log data generation based on a spatio-temporal neural network. J. Geophys. Eng. 18(5), 700–711 (2021)

    Article  Google Scholar 

  27. Yang, S., Wang, Y., Le Nir, I., He, A.: Ai-boosted geological facies analysis from high-resolution borehole images. In: SPWLA 61st Annual Logging Symposium. OnePetro (2020)

    Google Scholar 

  28. Yu, H., Chen, G., Gu, H.: A machine learning methodology for multivariate pore-pressure prediction. Comput. Geosci. 143, 104548 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the São Paulo Research Foundation (FAPESP), process #2022/05186-4, and by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil" (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Tamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tamoto, H., Contreras, R.C., Santos, F.L.d., Viana, M.S., Gioria, R.d.S., Carneiro, C.d.C. (2023). Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning Models. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23492-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23491-0

  • Online ISBN: 978-3-031-23492-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics