Abstract
In this paper we introduce a new Knowledge Representation model, the Similarity Fuzzy Semantic Networks. It is an extension of Fuzzy Semantic Networks that incorporates reasoning by similarity through a Similarity Inference Rule. Moreover, we show as it can be effectively applied to a trending and complex problem like the analysis of radical discourse in Twitter.
This work was financially supported by Junta de Andalucia, projects P18-FR-5020 and A-HUM-250-UGR18, and cofinanced by the European Social Fund (ESF). Manuel Francisco Aparicio was supported by the FPI 2017 predoctoral programme, from the Spanish Ministry of Economy and Competitiveness (MINECO), grant reference BES-2017-081202.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhiyafi, J., Atta-ur-Rahman, Alhaidari, F.A., Khan, M.A.: Automatic text categorization using fuzzy semantic network. In: Benavente-Peces, C., Slama, S., Zafar, B. (eds.) SEAHF 2019. SIST, vol. 150, pp. 24–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22964-1_3
Dujmović, J., Torra, V.: Aggregation functions in decision engineering: ten necessary properties and parameter-directedness. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 173–181. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_21
Flores, D.L., Rodríguez-Díaz, A., Castro, J.R., Gaxiola, C.: TA-fuzzy semantic networks for interaction representation in social simulation. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. SCI, vol. 257, pp. 213–225. Studies in Computational Intelligence, Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04514-1_12
Francisco, M., Castro, J.L.: A fuzzy model to enhance user profiles in microblogging sites using deep relations. Fuzzy Sets Syst. 401, 133–149 (2020). https://doi.org/10.1016/j.fss.2020.05.006. https://www.sciencedirect.com/science/article/pii/S0165011419301782
Guo, L., Yan, F., Li, T., Yang, T., Lu, Y.: An automatic method for constructing machining process knowledge base from knowledge graph. Robot. Comput.-Integr. Manuf. 73, 102222 (2022). https://doi.org/10.1016/j.rcim.2021.102222. https://www.sciencedirect.com/science/article/pii/S0736584521001058
Klawonn, F., Castro, J.L.: Similarity in fuzzy reasoning. Mathware Soft Comput. 3, 197–228 (1995)
Luo, M., Zhao, R.: Fuzzy reasoning algorithms based on similarity. J. Intell. Fuzzy Syst. 34, 213–219 (2018). https://doi.org/10.3233/JIFS-171140
Nouh, M., Jason Nurse, R., Goldsmith, M.: Understanding the radical mind: identifying signals to detect extremist content on Twitter, pp. 98–103 (2019). https://doi.org/10.1109/ISI.2019.8823548
Omri, M.N., Chouigui, N.: Measure of similarity between fuzzy concepts for identification of fuzzy user’s requests in fuzzy semantic networks. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, 743–748 (2001). https://doi.org/10.1016/S0218-4885(01)00119-8
Rahman, A.: Knowledge representation: a semantic network approach (2016). https://doi.org/10.4018/978-1-5225-0427-6
Spiller, P.Y.: Psicología y terrorismo: el terrorismo suicida. Estudio de variables que inciden en su aparición y desarrollo. Thesis, Universidad de Belgrano, Facultad de Humanidades (2005). http://repositorio.ub.edu.ar/handle/123456789/225. Accepted 23 July 2011
Ul Rehman, Z., et al.: Understanding the language of ISIS: an empirical approach to detect radical content on Twitter using machine learning. Comput. Mater. Continua 66(2), 1075–1090 (2020). https://doi.org/10.32604/cmc.2020.012770
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Castro, J.L., Francisco, M. (2023). Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-23492-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23491-0
Online ISBN: 978-3-031-23492-7
eBook Packages: Computer ScienceComputer Science (R0)