Skip to main content

Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

In this paper we introduce a new Knowledge Representation model, the Similarity Fuzzy Semantic Networks. It is an extension of Fuzzy Semantic Networks that incorporates reasoning by similarity through a Similarity Inference Rule. Moreover, we show as it can be effectively applied to a trending and complex problem like the analysis of radical discourse in Twitter.

This work was financially supported by Junta de Andalucia, projects P18-FR-5020 and A-HUM-250-UGR18, and cofinanced by the European Social Fund (ESF). Manuel Francisco Aparicio was supported by the FPI 2017 predoctoral programme, from the Spanish Ministry of Economy and Competitiveness (MINECO), grant reference BES-2017-081202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alhiyafi, J., Atta-ur-Rahman, Alhaidari, F.A., Khan, M.A.: Automatic text categorization using fuzzy semantic network. In: Benavente-Peces, C., Slama, S., Zafar, B. (eds.) SEAHF 2019. SIST, vol. 150, pp. 24–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22964-1_3

    Chapter  Google Scholar 

  2. Dujmović, J., Torra, V.: Aggregation functions in decision engineering: ten necessary properties and parameter-directedness. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 173–181. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_21

    Chapter  Google Scholar 

  3. Flores, D.L., Rodríguez-Díaz, A., Castro, J.R., Gaxiola, C.: TA-fuzzy semantic networks for interaction representation in social simulation. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds.) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. SCI, vol. 257, pp. 213–225. Studies in Computational Intelligence, Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04514-1_12

    Chapter  Google Scholar 

  4. Francisco, M., Castro, J.L.: A fuzzy model to enhance user profiles in microblogging sites using deep relations. Fuzzy Sets Syst. 401, 133–149 (2020). https://doi.org/10.1016/j.fss.2020.05.006. https://www.sciencedirect.com/science/article/pii/S0165011419301782

  5. Guo, L., Yan, F., Li, T., Yang, T., Lu, Y.: An automatic method for constructing machining process knowledge base from knowledge graph. Robot. Comput.-Integr. Manuf. 73, 102222 (2022). https://doi.org/10.1016/j.rcim.2021.102222. https://www.sciencedirect.com/science/article/pii/S0736584521001058

  6. Klawonn, F., Castro, J.L.: Similarity in fuzzy reasoning. Mathware Soft Comput. 3, 197–228 (1995)

    Google Scholar 

  7. Luo, M., Zhao, R.: Fuzzy reasoning algorithms based on similarity. J. Intell. Fuzzy Syst. 34, 213–219 (2018). https://doi.org/10.3233/JIFS-171140

    Article  Google Scholar 

  8. Nouh, M., Jason Nurse, R., Goldsmith, M.: Understanding the radical mind: identifying signals to detect extremist content on Twitter, pp. 98–103 (2019). https://doi.org/10.1109/ISI.2019.8823548

  9. Omri, M.N., Chouigui, N.: Measure of similarity between fuzzy concepts for identification of fuzzy user’s requests in fuzzy semantic networks. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, 743–748 (2001). https://doi.org/10.1016/S0218-4885(01)00119-8

    Article  MATH  Google Scholar 

  10. Rahman, A.: Knowledge representation: a semantic network approach (2016). https://doi.org/10.4018/978-1-5225-0427-6

  11. Spiller, P.Y.: Psicología y terrorismo: el terrorismo suicida. Estudio de variables que inciden en su aparición y desarrollo. Thesis, Universidad de Belgrano, Facultad de Humanidades (2005). http://repositorio.ub.edu.ar/handle/123456789/225. Accepted 23 July 2011

  12. Ul Rehman, Z., et al.: Understanding the language of ISIS: an empirical approach to detect radical content on Twitter using machine learning. Comput. Mater. Continua 66(2), 1075–1090 (2020). https://doi.org/10.32604/cmc.2020.012770

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Francisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castro, J.L., Francisco, M. (2023). Similarity Fuzzy Semantic Networks and Inference. An Application to Analysis of Radical Discourse in Twitter. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23492-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23491-0

  • Online ISBN: 978-3-031-23492-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics