Skip to main content

A Multi-population-Based Algorithm with Different Ways of Subpopulations Cooperation

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

Metaheuristic methods are designed to solve continuous and discrete problems. Such methods include population based algorithms (PBAs). They are distinguished by the flexibility of defining the fitness function, therefore they are a good alternative to gradient methods. However, creating new variants of PBAs that work similarly and differ in detail might be problematic. Therefore, it is interesting to combine existing PBAs in order to increase their effectiveness. One of the hybrid methods is the Multi-population Nature-Inspired Algorithm (MNIA), which uses search operators from different PBAs. The formula of MNIA’s operation is based on the appropriate cooperation of its subpopulations. That is why in this paper we focus on expanding MNIAs with various schemes of such cooperation. In particular, we analyze various combinations of migration models, intervals, and topologies. The proposed solutions were tested and compared using generally known benchmark functions. The obtained results showed an advantage of certain patterns of cooperation of the - subpopulations, which confirmed the validity of the adopted assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadianfar, I., Bozorg-Haddad, O., Chu, X.: Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. 540, 131–159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asadzadeh, L.: A parallel artificial bee colony algorithm for the job shop scheduling problem with a dynamic migration strategy. Comput. Ind. Eng. 102, 359–367 (2016)

    Article  Google Scholar 

  3. Bałanda, M., Pełka, R., Fitta, M., Laskowski, Ł, Laskowska, M.: Relaxation and magnetocaloric effect in the Mn 12 molecular nanomagnet incorporated into mesoporous silica: a comparative study. RSC Adv. 6(54), 49179–49186 (2016)

    Article  Google Scholar 

  4. Bartczuk, Ł, Przybył, A., Cpałka, K.: A new approach to linear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. (AMCS) 26(3), 603–621 (2016)

    Article  MATH  Google Scholar 

  5. Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_6

    Chapter  Google Scholar 

  6. Bilski, J., Kowalczyk, B., Marchlewska, A., Żurada, J.M.: Local Levenberg-Marquardt algorithm for learning feedforward neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020)

    Google Scholar 

  7. Bilski, J., Rutkowski, L., Smoląg, J., Tao, D.: A el method for speed training acceleration of recurrent neural networks. Inf. Sci. 553, 266–279 (2021). https://doi.org/10.1016/j.ins.2020.10.025

    Article  MATH  Google Scholar 

  8. Braik, M.S.: Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 174, 114685 (2021)

    Article  Google Scholar 

  9. Chen, Y., He, F., Li, H., Zhang, D., Wu, Y.: A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl. Soft Comput. 93, 106335 (2020)

    Article  Google Scholar 

  10. Dziwiński, P., Bartczuk, Ł., Paszkowski, J.: A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 10 (2020)

    Google Scholar 

  11. Dziwiński, P., Przybył, P., Trier, P., Paszkowski, J., Hayashi, Y.: Hardware implementation of a Takagi-Sugeno neuro-fuzzy system optimized by a population algorithm. J. Artif. Intell. Soft Comput. Res. 11(3), 243–266 (2021). https://doi.org/10.2478/jaiscr-2021-0015

    Article  Google Scholar 

  12. Duda, P., Jaworski, M., Cader, A., Wang, L.: On training deep neural networks using a streaming approach. J. Artif. Intell. Soft Comput. Res. 10(1), 15–26 (2020). https://doi.org/10.2478/jaiscr-2020-0002

    Article  Google Scholar 

  13. Hasanzadeh, M.R., Keynia, F.: A new population initialisation method based on the Pareto 80/20 rule for meta-heuristic optimisation algorithms. IET Software 15(5), 323–347 (2021)

    Article  Google Scholar 

  14. Holly, S., Nieße, A.: Dynamic communication topologies for distributed heuristics in energy system optimization algorithms, pp. 191–200 (2021)

    Google Scholar 

  15. Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

    Article  Google Scholar 

  16. Karaboga, D., Aslan, S.: A new emigrant creation strategy for parallel artificial bee colony algorithm. In: 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 689–694 (2015). https://doi.org/10.1109/eleco.2015.7394477

  17. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020). https://doi.org/10.2478/jaiscr-2020-0005

    Article  Google Scholar 

  18. Krell, E., Sheta, A., Balasubramanian, A.P.R., King, S.A.: Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 9 (2019)

    Google Scholar 

  19. Laskowska, M., et al.: Magnetic behaviour of Mn12-stearate single-molecule magnets immobilized inside SBA-15 mesoporous silica matrix. J. Magn. Magn. Mater. 478, 20–27 (2019)

    Article  Google Scholar 

  20. Laskowska, M., Oyama, M., Kityk, I., Marszalek, M., Dulski, M., Laskowski, L.: Surface functionalization by silver-containing molecules with controlled distribution of functionalities. Appl. Surf. Sci. 481, 433–436 (2019)

    Article  Google Scholar 

  21. Laskowski, Ł: Hybrid-maximum neural network for depth analysis from stereo-image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 47–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_7

    Chapter  Google Scholar 

  22. Laskowski, L., Kityk, I., Konieczny, P., Pastukh, O., Schabikowski, M., Laskowska, M.: The separation of the Mn12 single-molecule magnets onto spherical silica nanoparticles. Nanomaterials 9(5), 764 (2019)

    Article  Google Scholar 

  23. Laskowski, Ł, et al.: Multi-step functionalization procedure for fabrication of vertically aligned mesoporous silica thin films with metal-containing molecules localized at the pores bottom. Microporous Mesoporous Mater. 274, 356–362 (2019)

    Article  Google Scholar 

  24. Laskowski, Ł, Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 72–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_7

    Chapter  Google Scholar 

  25. Laskowski, Ł, Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 89–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_9

    Chapter  Google Scholar 

  26. Liu, T., Gao, X., Yuan, Q.: An improved gradient-based NSGA-II algorithm by a new chaotic map model. Soft. Comput. 21(23), 7235–7249 (2017)

    Article  Google Scholar 

  27. Liu, Y., et al.: Chaos-assisted multi-population salp swarm algorithms: framework and case studies. Expert Syst. Appl. 168, 114369 (2021)

    Article  Google Scholar 

  28. Lynn, N., Ali, M.Z., Suganthan, P.N.: Population topologies for particle swarm optimization and differential evolution. Swarm Evol. Comput. 39, 24–35 (2018)

    Article  Google Scholar 

  29. Łapa, K., Cpałka, K., Laskowski, Ł., Cader, A., Zeng, Z.: Evolutionary algorithm with a configurable search mechanism. J. Artif. Intell. Soft Comput. Res. 10 (2020)

    Google Scholar 

  30. Ma, H., Shen, S., Yu, M., Yang, Z., Fei, M., Zhou, H.: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey. Swarm Evol. Comput. 44, 365–387 (2019)

    Article  Google Scholar 

  31. Mańdziuk, J., Żychowski, A.: Dimensionality reduction in multilabel classification with neural networks. In: International Joint Conference on Neural Networks (IJCNN 2019), pp. 1–8 (2019). https://doi.org/10.1109/IJCNN.2019.8852156

  32. Medina, A., Tosca P.G., Ramírez-Torres, J.: A Comparative Study of Neighborhood Topologies for Particle Swarm Optimizers, pp. 152–159 (2009)

    Google Scholar 

  33. Migallón, H., Jimeno-Morenilla, A., Rico, H., Sánchez-Romero, J.L., Belazi, A.: Multi-level parallel chaotic Jaya optimization algorithms for solving constrained engineering design problems. J. Supercomput. 77(11), 12280–12319 (2021). https://doi.org/10.1007/s11227-021-03737-0

    Article  Google Scholar 

  34. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  35. Mizera, M., Nowotarski, P., Byrski, A., Kisiel-Dorohinicki, M.: Fine tuning of agent-based evolutionary computing. J. Artif. Intell. Soft Comput. Res. 9 (2019)

    Google Scholar 

  36. Najmeh, S.J., Salwani, A., Abdul, R.H.: Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Inf. Sci. 294, 628–644 (2015)

    Article  MathSciNet  Google Scholar 

  37. Nasim, A., Burattini, L., Fateh, M.F., Zameer, A.: Solution of linear and-linear boundary value problems using population-distributed parallel differential evolution. J. Artif. Intell. Soft Comput. Res. 9 (2019)

    Google Scholar 

  38. Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpałka, K., Zalasiński, M., Cader, A.: Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res. 11(2), 143–155 (2021). https://doi.org/10.2478/jaiscr-2021-0009

    Article  Google Scholar 

  39. Okulewicz, M., Mańdziuk, J.: The impact of particular components of the PSO-based algorithm solving the dynamic vehicle routing problem. Appl. Soft Comput. 58, 586–604 (2017). https://doi.org/10.1016/j.asoc.2017.04.070

    Article  Google Scholar 

  40. Ono, K., Hanada, Y., Kuma M., Kimura, M.: Enhancing island model genetic programming by controlling frequent trees. J. Artif. Intell. Soft Comput. Res. 9 (2019)

    Google Scholar 

  41. Pourchot, A., Sigaud, O.: CEM-RL: combining evolutionary and gradient-based methods for policy search. arXiv preprint arXiv:1810.01222 (2018)

  42. Sanu, M., Jeyakumar, G.: Empirical performance analysis of distributed differential evolution for varying migration topologies. Int. J. Appl. Eng. Res. 10, 11919–11932 (2015)

    Google Scholar 

  43. Scherer, R., Rutkowski, L.: Neuro-fuzzy relational classifiers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 376–380. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_54

    Chapter  Google Scholar 

  44. Scherer, R., Rutkowski, L.: Neuro-fuzzy relational systems. In: Proceedings of FSKD 2002, pp. 44–48 (2002)

    Google Scholar 

  45. Scherer, R., Rutkowski, L.: Relational equations initializing neuro-fuzzy system. In: 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 18–22 (2002)

    Google Scholar 

  46. Scherer, R.: Neuro-fuzzy systems with relation matrix. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_27

    Chapter  Google Scholar 

  47. Słowik, A.: Steering of balance between exploration and exploitation properties of evolutionary algorithms - mix selection. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 213–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_26

    Chapter  Google Scholar 

  48. Słowik, A., Białko, M.: Design and optimization of combinational digital circuits using modified evolutionary algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_69

    Chapter  MATH  Google Scholar 

  49. Słowik, A., Białko, M.: Modified version of roulette selection for evolution algorithms – the fan selection. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 474–479. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_70

    Chapter  Google Scholar 

  50. Slowik, A., Bialko, M.: Design and optimization of IIR digital filters with non-standard characteristics using continuous ant colony optimization algorithm. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 395–400. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_39

    Chapter  Google Scholar 

  51. Słowik, A., Białko, M.: Design of IIR digital filters with-standard characteristics using differential evolution algorithm. Bull. Pol. Acad. Sci.-Tech. Sci. 55(4), 359–363 (2007)

    Google Scholar 

  52. Słowik, A., Cpałka, K.: Hybrid approaches to nature-inspired population-based intelligent optimization for industrial applications. IEEE Trans. Ind. Inf. 18(1), 546–558 (2022)

    Article  Google Scholar 

  53. Słowik, A., Cpałka, K., Łapa, K.: Multi-population nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems. IEEE Trans. Fuzzy Syst. 28(6), 1125–1139 (2020)

    Article  Google Scholar 

  54. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Starczewski, J., Scherer, R., Korytkowski, M., Nowicki, R.: Modular type-2 neuro-fuzzy systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 570–578. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_59

    Chapter  Google Scholar 

  56. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report (2005)

    Google Scholar 

  57. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_9

    Chapter  Google Scholar 

  58. Tabassum, M.F., Saeed, M., Akgül, A., Farman, M., Akram, S.: Solution of chemical dynamic optimization systems using el differential gradient evolution algorithm. Phys. Scr. 96(3), 035212 (2021)

    Article  Google Scholar 

  59. Tan, Y.: Fireworks Algorithm. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46353-6

    Book  MATH  Google Scholar 

  60. Wang, L., Maciejewski, A., Siegel H., Roychowdhury, V.: A comparative study of five parallel genetic algorithms using the traveling salesman problem. In: Proceedings of the 11th International Parallel Processing Symposium. IEEE Computer Society Press (1998)

    Google Scholar 

  61. Wei, Y., et al.: Vehicle emission computation through microscopic traffic simulation calibrated using genetic algorithm. J. Artif. Intell. Soft Comput. Res. 9 (2019)

    Google Scholar 

  62. Yang, X.S., Deb, S.: Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)

    Article  Google Scholar 

  63. Zalasiński, M., Cpałka, K.: A new method for signature verification based on selection of the most important partitions of the dynamic signature. Neurocomputing 10, 13–22 (2018)

    Article  Google Scholar 

  64. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier. Academic Publishing House EXIT, pp. 38–53 (2011)

    Google Scholar 

  65. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  66. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 218–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_20

    Chapter  Google Scholar 

  67. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 231–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_21

    Chapter  Google Scholar 

  68. Zalasiński, M., Cpałka, K., Laskowski, Ł, Wunsch, D.C., Przybyszewski, K.: An algorithm for the evolutionary-fuzzy generation of on-line signature hybrid descriptors. J. Artif. Intell. Soft Comput. Res. 10(3), 173–187 (2020). https://doi.org/10.2478/jaiscr-2020-0012

    Article  Google Scholar 

  69. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 113–121. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_11

    Chapter  Google Scholar 

  70. Zalasiński, M., Łapa, K., Cpałka, K.: Prediction of values of the dynamic signature features. Expert Syst. Appl. 104, 86–96 (2018)

    Article  Google Scholar 

  71. Zalasiński, M., Łapa, K., Cpałka, K., Przybyszewski, K., Yen, G.G.: On-line signature partitioning using a population based algorithm. J. Artif. Intell. Soft Comput. Res. 10(1), 5–13 (2020). https://doi.org/10.2478/jaiscr-2020-0001

    Article  Google Scholar 

Download references

Acknowledgment

This paper was financed under the program of the Minister of Science and Higher Education under the name ‘Regional Initiative of Excellence’ in the years 2019-2022, project number 020/RID/2018/19 with the amount of financing PLN 12 000 000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cpałka, K., Łapa, K., Rutkowski, L. (2023). A Multi-population-Based Algorithm with Different Ways of Subpopulations Cooperation. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23492-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23491-0

  • Online ISBN: 978-3-031-23492-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics