Abstract
A new parallel computational approach to the Levenberg-Marquardt learning algorithm is presented. The proposed solution is based on the AVX instructions to effectively reduce the high computational load of this algorithm. Detailed parallel neural network computations are explicitly discussed. Additionally obtained acceleration is shown based on a few test problems.
This work has been supported by the Polish National Science Center under Grant 2017/27/B/ST6/02852.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartczuk, Ł, Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. (AMCS) 26(3), 603–621 (2016)
Bilski, J.: The UD RLS algorithm for training the feedforward neural networks. Int. J. Appl. Math. Comput. Sci. 15(1), 101–109 (2005)
Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_19
Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_2
Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_3
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 12–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_2
Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent Jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 32–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_3
Bilski, J.: Parallel structures for feedforward and dynamical neural networks (in Polish). AOW EXIT (2013)
Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_2
Bilski, J., Smola̧g, J.: Parallel architectures for learning the RTRN and elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. PP(99), (2014). https://doi.org/10.1109/TPDS.2014.2357019
Bilski, J., Kowalczyk, B., Marchlewska A., Żurada J.M.: Local levenberg-marquardt algorithm for learning feedforwad neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020). https://doi.org/10.2478/jaiscr-2020-0020
Bilski, J., Kowalczyk, B., Marjański, A., Gandor, M., Żurada, J.M.: A novel fast feedforward neural networks training algorithm. J. Artif. Intell. Soft Comput. Res. 11(4), 287–306 (2021). https://doi.org/10.2478/jaiscr-2021-0017
Bilski J., Rutkowski L., Smola̧g J., Tao D., A novel method for speed training acceleration of recurrent neural networks. Inf. Sci. 553, 266–279 (2021). https://doi.org/10.1016/j.ins.2020.10.025
Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines, convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)
Cpałka, K., Rutkowski, L.: Flexible takagi-sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, Montreal, pp. 1764–1769 (2005)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Cpalka, K., Rebrova, O., Nowicki, R. et al.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), Special Issue: SI, 706–720 (2013)
Fahlman, S.: Faster learning variations on backpropagation: an empirical study. In: Proceedings of Connectionist Models Summer School, Los Atos (1988)
Gabryel, M., Przybyszewski, K.: Methods of searching for similar device fingerprints using changes in unstable parameters. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12416, pp. 325–335. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61534-5_29
Gabryel, M., Scherer, M.M., Sułkowski, Ł, Damaševičius, R.: Decision making support system for managing advertisers by ad fraud detection. J. Artif. Intell. Soft Comput. Res. 11, 331–339 (2021)
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neuralnetworks 5(6), 989–993 (1994)
Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_26
Korytkowski, M., Scherer, R.: Negative correlation learning of neuro-fuzzy system. LNAI 6113, 114–119 (2010)
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_48
Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_30
Marqardt, D.: An algorithm for last-sqares estimation of nonlinear paeameters. J. Soc. Ind. Appl. Math. 431–441 (1963)
Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpałka, K., Zalasiński, M., Cader, A.: Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res. 11(2), 143–155 (2021). https://doi.org/10.2478/jaiscr-2021-0009
Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural networks. J. Artif. Intell. Soft Comput. Res. 1(2), 103–114 (2011)
Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning: the RPROP Algorithm. In: IEEE International Conference on Neural Networks, San Francisco (1993)
Romaszewski, M., Gawron, P., Opozda, S.: Dimensionality reduction of dynamic msh animations using HO-SVD. J. Artif. Intell. Soft Comput. Res. 3(3), 277–289 (2013)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Parallel Distributed Processing, vol. 1, ch. 8, Rumelhart, D.E., McCelland, J. (red.). The MIT Press, Cambridge, Massachusetts (1986)
Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Sig. Process. 41(10), 3062–3065 (1993)
Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Trans. Inf. Theor. 37(1), 214–216 (1991)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)
Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_79
Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–1091 (1989)
Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explainable flexible fuzzy recommender and its performance evaluation using the akaike information criterion. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 717–724. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_78
Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proceedings of V Conference Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)
Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proceedings of IV Conference Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)
Starczewski, A.: A clustering method based on the modified RS validity index. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 242–250. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_23
Starczewski J.T. Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty, volume 284 of Studies in Fuzziness and Soft Computing. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-29520-1
Starczewski, J.T., Goetzen, P., Napoli, Ch.: Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems. J. Artif. Intell. Soft Comput. Res. 10, 271–285 (2020)
Tadeusiewicz, R.: Neural Networks (in Polish). AOW RM (1993)
Werbos, J.: Backpropagation through time: what it does and how to do it. In: Proceedings of the IEEE, vol. 78, no. 10 (1990)
Wilamowski, B.M., Yo, H.: Neural network learning without backpropagation. IEEE Trans. Neural Network. 21(11), 1793–1803 (2010)
Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_32
Zalasiński, M., Łapa, K., Cpałka, K.: Prediction of values of the dynamic signature features. Expert Syst. Appl. 104, 86–96 (2018)
El Zini J., Rizk Y., Awad M.: An optimized parallel implementation of non-iteratively trained recurrent neural networks. Journal of Artif. Intell. Soft Comput. Res. 11(1), 33–50 (2021). https://doi.org/10.2478/jaiscr-2021-0003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bilski, J., Kowalczyk, B., Smola̧g, J. (2023). A New Computational Approach to the Levenberg-Marquardt Learning Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-23492-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23491-0
Online ISBN: 978-3-031-23492-7
eBook Packages: Computer ScienceComputer Science (R0)