Skip to main content

Training Subjective Perception Biased Images of Vehicle Ambient Lights with Deep Belief Networks Using Backpropagation- and Enforcing-Rules Supervised

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

Quality measurement of vehicle ambient lighting during series production can be influenced by subjective perceptions of light homogeneity. In consequence, the labels correspond to the decisions whether the lights appear homogeneous or not. In this article we demonstrate how images of ambient lighting were trained by Deep Belief Networks using the learning rules “backpropagation” (BP) and “enforcing-rule supervised” (ERS). In addition, the effect of the contrastive divergence pre-training is analyzed on the accuracy of the trained networks. The results are promising for decision support in the production process to minimize the influence of subjectivity by human evaluators.

Supported by MENTOR GmbH & Co. Präzisions-Bauteile KG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schellinger, S., Franzke, D., Klinger, K., Lemmer, U.: Advantages of ambient interior lighting for drivers contrast vision. In: Proceedings of SPIE 6198, Photonics in the Automobile II, 61980J (2006)

    Google Scholar 

  2. Flannagan, M.J., Devonshire, J.M.: Effects of automotive interior lighting on driver vision. Leukos 9(1), 9–23 (2012)

    Article  Google Scholar 

  3. Winklbauer, M., Bayersdorfer, B., Lang, J.: Evocative lighting design for premium interiors. ATZ Worldw 117, 32–35 (2015)

    Article  Google Scholar 

  4. Caberletti, L., Elfmann, K., Kummel, M., Schierz, C.: Influence of ambient lighting in a vehicle interior on the driver’s perceptions. Lighting Res. Technol. 42(3), 297–311 (2010)

    Article  Google Scholar 

  5. Luo, W., Luo, X.: User experience research on automotive interior lighting design. In: Ahram, T., Falcão, C. (eds.) AHFE 2017. AISC, vol. 607, pp. 240–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60492-3_23

    Chapter  Google Scholar 

  6. Nandyala, S., Gayathri, K., Sharath, D.H., Manalikandy, M.: Human Emotion Based Interior Lighting Control. No. 2018–01-1042, SAE Technical Paper (2018)

    Google Scholar 

  7. Weirich, C., Lin, Y., Khanh, T.Q.: Evidence for human-centric in-vehicle lighting: part 1. Appl. Sci. 12, 552 (2022)

    Article  Google Scholar 

  8. Kim, T., Kim, Y., Jeon, H., Choi, C.-S., Suk, H.-J.: Emotional response to in-car dynamic lighting. Int. J. Autom. Technol. 22(4), 1035–1043 (2021). https://doi.org/10.1007/s12239-021-0093-4

    Article  Google Scholar 

  9. Hassib, M., Braun, M., Pfleging, B., Alt, F.: Detecting and influencing driver emotions using psycho-physiological sensors and ambient light. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019. LNCS, vol. 11746, pp. 721–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29381-9_43

    Chapter  Google Scholar 

  10. Bohrmann, D., Bruder, A., Bengler, K.: Effects of dynamic visual stimuli on the development of carsickness in real driving. IEEE Trans. Intell. Transp. Syst. 23(5), 4833–4842 (2022)

    Article  Google Scholar 

  11. Shelton, B., Nesbitt, K., Thorpe, A., Eidels, A.: Assessing the cognitive load associated with ambient displays. Pers. Ubiquit. Comput. 26(1), 185–204 (2022)

    Article  Google Scholar 

  12. Blankenbach, K., Hertlein, F., Hoffmann, S.: Advances in automotive interior lighting concerning new LED approach and optical performance. J. Soc. Inf. Display. 28, 655–667 (2020)

    Article  Google Scholar 

  13. Fotios, S., Robbins, C.J., Uttley, J.: A comparison of approaches for investigating the impact of ambient light on road traffic collisions. Lighting Res. Technol. 53(3), 249–261 (2020)

    Article  Google Scholar 

  14. Fotios, S., Robbins, C.J.: Effect of ambient light on the number of motorized vehicles, cyclists, and pedestrians. Transp. Res. Record 03611981211044469 (2021)

    Google Scholar 

  15. Blankenbach, K., Brezing, L., Reichel, S.: Evaluation of luminance vs. brightness for automotive RGB LED light guides in autonomous cars. In: Proceedings of SPIE 11874, Illumination Optics VI, p. 1187406 (2021)

    Google Scholar 

  16. FakhrHosseini, S., Ko, S., Alvarez, I., Jeon, M.: Driver emotions in automated vehicles. In: Riener, A., Jeon, M., Alvarez, I. (eds.) User Experience Design in the Era of Automated Driving. SCI, vol. 980, pp. 85–97. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-77726-5_4

    Chapter  Google Scholar 

  17. Mangla, A., Gulati, D., Jhamb, N., Vashist, D.: Design analysis of dimmer light for autonomous vehicles. In: Khosla, A., Aggarwal, M. (eds.) Smart Structures in Energy Infrastructure. SIC, pp. 145–152. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-4744-4_15

    Chapter  Google Scholar 

  18. Stylidis, K., Woxlin, A., Siljefalk, L., Heimersson, E., Söderberg, R.: Understanding light. A study on the perceived quality of car exterior lighting and interior illumination. Procedia CIRP 93, 1340–1345 (2020)

    Google Scholar 

  19. Fernandez, V., Chavez, J., Kemper, G.: Device to evaluate cleanliness of fiber optic connectors using image processing and neural networks. Int. J. Electr. Comput. Eng. (IJECE) 11(4), 3093–3105 (2021)

    Article  Google Scholar 

  20. Lin, H., Li, B., Wang, X., Shu, Y., Niu, S.: Automated defect inspection of LED chip using deep convolutional neural network. J. Intell. Manuf. 30(6), 2525–2534 (2019)

    Article  Google Scholar 

  21. Fu, Y., Downey, A.R.J., Yuan, L., Zhang, T., Pratt, A., Balogun, Y.: Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 75, 693–710 (2022)

    Article  Google Scholar 

  22. Liu, Y., Zhou, H., Tsung, F., Zhang, S.: Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks. Comput. Ind. Eng. 136, 494–503 (2019)

    Article  Google Scholar 

  23. Huang, X., Zhang, X., Xiong, Y., Liu, H., Zhang, Y.: A novel intelligent fault diagnosis approach for early cracks of turbine blades via improved deep belief network using three-dimensional blade tip clearance. IEEE Access 9, 13039–13051 (2021)

    Article  Google Scholar 

  24. Bengio, Y., Lamblin, P., Popovici, D., Larochelle. H.: Greedy layer-wise training of deep networks, Technical Report 1282 (2006)

    Google Scholar 

  25. Klüver, C., Klüver, J.: New learning rules for three-layered feed-forward neural networks based on a general learning schema. In: Madani K. (ed.) Proceedings of ANNIIP: International Workshop on Artificial Neural Networks and Intelligent Information Processing. Portugal: Scitepress, 2014, pp. 27–36 (2014)

    Google Scholar 

  26. Hinton, G.E.: training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  27. Jahani, A.: Forest landscape aesthetic quality model (FLAQM): a comparative study on landscape modelling using regression analysis and artificial neural networks. J. Forest Sci. 65, 61–69 (2019)

    Article  Google Scholar 

  28. Thiemermann, S., Braun, G., Klüver, C.: Homogeneity testing of LED light guides by neural networks. In Klüver, C, Klüver, J. (eds.): New algorithms for practical problems: variations on artificial intelligence and artificial life, pp. 325–339. Wiesbaden: Springer Fachmedien Wiesbaden (2021). (in German)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Klüver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, G., Brokamp, M., Klüver, C. (2023). Training Subjective Perception Biased Images of Vehicle Ambient Lights with Deep Belief Networks Using Backpropagation- and Enforcing-Rules Supervised. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23492-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23491-0

  • Online ISBN: 978-3-031-23492-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics