Skip to main content

Improving Few-Shot Image Classification with Self-supervised Learning

  • Conference paper
  • First Online:
Cloud Computing – CLOUD 2022 (CLOUD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13731))

Included in the following conference series:

Abstract

Few-Shot Image Classification (FSIC) aims to learn an image classifier with only a few training samples. The key challenge of few-shot image classification is to learn this classifier with scarce labeled data. To tackle the issue, we leverage the self-supervised learning (SSL) paradigm to exploit unsupervised information. This work builds upon two-stage training paradigm, to push the current state-of-the-art (SOTA) in solving FSIC problem further. Specifically, we incorporate the traditional self-supervised learning method (TSSL) into the pre-training stage and propose an episodic contrastive loss (CL) as an auxiliary supervision for the meta-training stage. The proposed bipartite method, called FSIC-SSL, can SOTA task accuracies on two mainstream FSIC benchmark datasets. Our code will be available at https://github.com/SethDeng/FSIC_SSL.

S. Deng and D. Liao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali-Gombe, A., Elyan, E., Savoye, Y., Jayne, C.: Few-shot classifier GAN. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  2. Altae-Tran, H., Ramsundar, B., Pappu, A.S., Pande, V.: Low data drug discovery with one-shot learning. ACS Cent. Sci. 3(4), 283–293 (2017)

    Article  Google Scholar 

  3. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  5. Bateni, P., Barber, J., van de Meent, J.W., Wood, F.: Enhancing few-shot image classification with unlabelled examples. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2796–2805 (2022)

    Google Scholar 

  6. Boudiaf, M., Ziko, I., Rony, J., Dolz, J., Piantanida, P., Ben Ayed, I.: Information maximization for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 2445–2457 (2020)

    Google Scholar 

  7. Bronskill, J., Gordon, J., Requeima, J., Nowozin, S., Turner, R.: TaskNorm: rethinking batch normalization for meta-learning. In: International Conference on Machine Learning, pp. 1153–1164. PMLR (2020)

    Google Scholar 

  8. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  9. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2959–2968 (2019)

    Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  11. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2018)

    Google Scholar 

  12. Chen, Z., Ge, J., Zhan, H., Huang, S., Wang, D.: Pareto self-supervised training for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13663–13672 (2021)

    Google Scholar 

  13. Chen, Z., Maji, S., Learned-Miller, E.: Shot in the dark: few-shot learning with no base-class labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2668–2677 (2021)

    Google Scholar 

  14. Co-Reyes, J.D., et al.: Meta-learning language-guided policy learning. In: International Conference on Learning Representations, vol. 3 (2019)

    Google Scholar 

  15. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Educacion (2005)

    Google Scholar 

  16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  17. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Doersch, C., Gupta, A., Zisserman, A.: Crosstransformers: spatially-aware few-shot transfer. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21981–21993 (2020)

    Google Scholar 

  19. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  20. Fink, M.: Object classification from a single example utilizing class relevance metrics. In: Advances in Neural Information Processing Systems, vol. 17 (2004)

    Google Scholar 

  21. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  22. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  23. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8059–8068 (2019)

    Google Scholar 

  24. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (2018)

    Google Scholar 

  25. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  26. Gutstein, S., Fuentes, O., Freudenthal, E.: Knowledge transfer in deep convolutional neural nets. Int. J. Artif. Intell. Tools 17(03), 555–567 (2008)

    Article  Google Scholar 

  27. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  28. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  30. Hong, Y., Niu, L., Zhang, J., Zhang, L.: Matchinggan: matching-based few-shot image generation. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  31. Hu, S.X., Li, D., Stühmer, J., Kim, M., Hospedales, T.M.: Pushing the limits of simple pipelines for few-shot learning: external data and fine-tuning make a difference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9068–9077 (2022)

    Google Scholar 

  32. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inform. 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  Google Scholar 

  34. Kim, J., Kim, T., Kim, S., Yoo, C.D.: Edge-labeling graph neural network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2019)

    Google Scholar 

  35. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  37. Liu, C., et al.: Learning a few-shot embedding model with contrastive learning. In: AAAI (2021)

    Google Scholar 

  38. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  39. Luo, X., Chen, Y., Wen, L., Pan, L., Xu, Z.: Boosting few-shot classification with view-learnable contrastive learning. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  40. Ma, J., Xie, H., Han, G., Chang, S.F., Galstyan, A., Abd-Almageed, W.: Partner-assisted learning for few-shot image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10573–10582 (2021)

    Google Scholar 

  41. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. In: International Conference on Learning Representations (2018)

    Google Scholar 

  42. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint arXiv:1803.029992(3), 4 (2018)

  43. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  44. Oreshkin, B., Rodríguez López, P., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  45. Ouali, Y., Hudelot, C., Tami, M.: Spatial contrastive learning for few-shot classification. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12975, pp. 671–686. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_41

    Chapter  Google Scholar 

  46. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  47. Pavan Kumar, M., Jayagopal, P.: Multi-class imbalanced image classification using conditioned GANs. Int. J. Multimedia Inf. Retrieval 10(3), 143–153 (2021)

    Article  Google Scholar 

  48. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: International Conference on Learning Representations (2018)

    Google Scholar 

  49. Rodríguez, P., Laradji, I., Drouin, A., Lacoste, A.: Embedding propagation: smoother manifold for few-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 121–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_8

    Chapter  Google Scholar 

  50. Royle, J.A., Dorazio, R.M., Link, W.A.: Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Stat. 16(1), 67–85 (2007)

    Article  MathSciNet  Google Scholar 

  51. Su, J.-C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_38

    Chapter  Google Scholar 

  52. Tang, X., Teng, Z., Zhang, B., Fan, J.: Self-supervised network evolution for few-shot classification. In: IJCAI, pp. 3045–3051 (2021)

    Google Scholar 

  53. Thrun, S., Pratt, L.: Learning to learn: Introduction and overview. In: Thrun, S., Pratt, L. (eds.) Learning to learn, pp. 3–17. Springer, Cham (1998). https://doi.org/10.1007/978-1-4615-5529-2_1

  54. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  55. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16

    Chapter  Google Scholar 

  56. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  57. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  58. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  59. Wei, C., et al.: Iterative reorganization with weak spatial constraints: solving arbitrary jigsaw puzzles for unsupervised representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1910–1919 (2019)

    Google Scholar 

  60. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  61. Yan, W., Yap, J., Mori, G.: Multi-task transfer methods to improve one-shot learning for multimedia event detection. In: BMVC, pp. 37–1 (2015)

    Google Scholar 

  62. Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.: DPGN: distribution propagation graph network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13390–13399 (2020)

    Google Scholar 

  63. Yang, Z., Wang, J., Zhu, Y.: Few-shot classification with contrastive learning. arXiv preprint arXiv:2209.08224 (2022)

  64. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8808–8817 (2020)

    Google Scholar 

  65. Zhang, C., Cai, Y., Lin, G., Shen, C.: DeepEMD: differentiable earth mover’s distance for few-shot learning. arXiv preprint arXiv:2003.06777 (2020)

  66. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  67. Zhang, Y., Yang, W., Sun, W., Ye, K., Chen, M., Xu, C.-Z.: The constrained GAN with hybrid encoding in predicting financial behavior. In: Wang, D., Zhang, L.-J. (eds.) AIMS 2019. LNCS, vol. 11516, pp. 13–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23367-9_2

    Chapter  Google Scholar 

  68. Zhuang, F., Ren, L., Dong, Q., Sinnott, R.O.: A mobile application using deep learning to automatically classify adult-only images. In: Xu, R., De, W., Zhong, W., Tian, L., Bai, Y., Zhang, L.-J. (eds.) AIMS 2020. LNCS, vol. 12401, pp. 140–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59605-7_11

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported in part by National Key R &D Program of China (No. 2019YFB2102100), Key-Area Research and Development Program of Guangdong Province (No. 2020B010164003), and Shenzhen Science and Technology Innovation Commission (No. JCYJ20190812160003719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, S., Liao, D., Gao, X., Zhao, J., Ye, K. (2022). Improving Few-Shot Image Classification with Self-supervised Learning. In: Ye, K., Zhang, LJ. (eds) Cloud Computing – CLOUD 2022. CLOUD 2022. Lecture Notes in Computer Science, vol 13731. Springer, Cham. https://doi.org/10.1007/978-3-031-23498-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23498-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23497-2

  • Online ISBN: 978-3-031-23498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics