Skip to main content

Boosting Item Coverage in Session-Based Recommendation

  • Conference paper
  • First Online:
Services Computing – SCC 2022 (SCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13738))

Included in the following conference series:

  • 209 Accesses

Abstract

Traditional recommender systems that rely heavily on user profiles or historical consumption of users are more susceptible to the cold start and model drift limitations due to dynamic user preferences. Recent advances in recommendations have seen a shift towards session-based recommender systems, which provide recommendations solely based on a user’s interactions in an ongoing session. As a result, the focus is placed on sequential learning, and existing algorithms are heavily impacted by accidental clicks, which ultimately limits an item’s coverage. In this work, we propose a two-stage approach to boosting item’s coverage in session-based recommendations. First, we train a skip-gram model with negative sampling to generate candidate items that co-occur with a given query set. We then apply weighting to mitigate the effects of accidental clicks during a session. Next, we use a multi-armed bandit approach to boost recommendation coverage by balancing the exploration-exploitation trade-off. Experiments with three real-world datasets show that our model’s performance is comparable to existing state-of-the-art methods and outperforms them in recommendation coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anarfi, R., Kwapong, B., Fletcher, K.K.: Towards a reinforcement learning-based exploratory search for mashup tag recommendation. In: 2021 IEEE International Conference on Smart Data Services (SMDS), pp. 8–17. IEEE (2021)

    Google Scholar 

  2. Anarfi, R., Fletcher, K.K.: A reinforcement learning approach to web API recommendation for mashup development. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642, pp. 372–373. IEEE (2019)

    Google Scholar 

  3. Anarfi, R., Kwapong, B., Fletcher, K.K.: Desc2tag: a reinforcement learning approach to mashup tag recommendation. In: 2020 IEEE International Conference on Services Computing (SCC), pp. 475–477. IEEE (2020)

    Google Scholar 

  4. Chamberlain, B.P., Rossi, E., Shiebler, D., Sedhain, S., Bronstein, M.M.: Tuning word2vec for large scale recommendation systems. In: Fourteenth ACM Conference on Recommender Systems, pp. 732–737 (2020)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Esmeli, R., Bader-El-Den, M., Abdullahi, H.: Using word2vec recommendation for improved purchase prediction. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  7. Felício, C.Z., Paixão, K.V., Barcelos, C.A., Preux, P.: A multi-armed bandit model selection for cold-start user recommendation. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 32–40 (2017)

    Google Scholar 

  8. Fletcher, K.K.: A method for dealing with data sparsity and cold-start limitations in service recommendation using personalized preferences. In: 2017 IEEE International Conference on Cognitive Computing (ICCC), pp. 72–79. IEEE (2017)

    Google Scholar 

  9. Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 257–260 (2010)

    Google Scholar 

  10. Gimelfarb, M., Sanner, S., Lee, C.G.: \(\epsilon \)-bmc: a Bayesian ensemble approach to epsilon-greedy exploration in model-free reinforcement learning. arXiv preprint arXiv:2007.00869 (2020)

  11. Greenstein-Messica, A., Rokach, L., Friedman, M.: Session-based recommendations using item embedding. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 629–633 (2017)

    Google Scholar 

  12. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10(12) (2009)

    Google Scholar 

  13. He, R., McAuley, J.: Fusing similarity models with Markov chains for sparse sequential recommendation. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 191–200. IEEE (2016)

    Google Scholar 

  14. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-based recommendations. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 843–852 (2018)

    Google Scholar 

  15. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  16. Intayoad, W., Kamyod, C., Temdee, P.: Reinforcement learning based on contextual bandits for personalized online learning recommendation systems. Wirel. Pers. Commun. 1–16 (2020)

    Google Scholar 

  17. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood for session-based recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 306–310 (2017)

    Google Scholar 

  18. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 659–667 (2013)

    Google Scholar 

  19. Kamehkhosh, I., Jannach, D., Ludewig, M.: A comparison of frequent pattern techniques and a deep learning method for session-based recommendation. In: RecTemp@ RecSys, pp. 50–56 (2017)

    Google Scholar 

  20. Kaminskas, M., Bridge, D.: Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Trans. Interact. Intell. Sys. (TiiS) 7(1), 1–42 (2016)

    Google Scholar 

  21. Kawamae, N.: Serendipitous recommendations via innovators. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 218–225 (2010)

    Google Scholar 

  22. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.-J. (eds.) SCC 2019. LNCS, vol. 11515, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23554-3_6

    Chapter  Google Scholar 

  23. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Collaborative learning using LSTM-RNN for personalized recommendation. In: Wang, Q., Xia, Y., Seshadri, S., Zhang, L.-J. (eds.) SCC 2020. LNCS, vol. 12409, pp. 35–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59592-0_3

    Chapter  Google Scholar 

  24. Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algorithms. User Model. User-Adapt. Inter. 28(4), 331–390 (2018)

    Article  Google Scholar 

  25. Ludewig, M., Mauro, N., Latifi, S., Jannach, D.: Empirical analysis of session-based recommendation algorithms. User Model. User-Adapt. Inter. 31(1), 149–181 (2021)

    Article  Google Scholar 

  26. Maccatrozzo, V., Terstall, M., Aroyo, L., Schreiber, G.: SIRUP: serendipity in recommendations via user perceptions. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces, pp. 35–44 (2017)

    Google Scholar 

  27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  28. Norris, J.R., Norris, J.R.: Markov Chains, No. 2. Cambridge University Press (1998)

    Google Scholar 

  29. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

  30. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 811–820 (2010)

    Google Scholar 

  31. Sanz-Cruzado, J., Castells, P., López, E.: A simple multi-armed nearest-neighbor bandit for interactive recommendation. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 358–362 (2019)

    Google Scholar 

  32. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_8

    Chapter  Google Scholar 

  33. Sun, F., et al.: BERT4rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1441–1450 (2019)

    Google Scholar 

  34. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  35. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 17–22 (2016)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  37. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 346–353 (2019)

    Google Scholar 

  38. Xu, Y., et al.: Neural serendipity recommendation: exploring the balance between accuracy and novelty with sparse explicit feedback. ACM Trans. Knowl. Discov. from Data (TKDD) 14(4), 1–25 (2020)

    Article  Google Scholar 

  39. Zeng, C., Wang, Q., Mokhtari, S., Li, T.: Online context-aware recommendation with time varying multi-armed bandit. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2025–2034 (2016)

    Google Scholar 

  40. Zuva, K., Zuva, T.: Diversity and serendipity in recommender systems. In: Proceedings of the International Conference on Big Data and Internet of Thing, pp. 120–124 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K. Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anarfi, R., Sen, A., Fletcher, K.K. (2022). Boosting Item Coverage in Session-Based Recommendation. In: Qingyang, W., Zhang, LJ. (eds) Services Computing – SCC 2022. SCC 2022. Lecture Notes in Computer Science, vol 13738. Springer, Cham. https://doi.org/10.1007/978-3-031-23515-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23515-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23514-6

  • Online ISBN: 978-3-031-23515-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics