Skip to main content

TSFed: A Two-Stage Federated Learning Framework via Cloud-Edge Collaboration for Services QoS Prediction

  • Conference paper
  • First Online:
Web Services – ICWS 2022 (ICWS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13736))

Included in the following conference series:

Abstract

Federated learning-based quality of service (QoS) prediction methods are regularly used to protect user privacy in smart cities. However, federated learning (FL) is fragile for heterogeneous QoS data, and these FL methods usually update a single global model by aggregating diverging gradients, which cannot effectively capture the heterogeneous data features of different users, resulting in less than optimal model convergence speed. Moreover, the existing FL methods do not pay attention to the positive effect of regional similarity of QoS data on model convergence. To address these issues, we propose a two-stage federated learning QoS prediction framework (TSFed) based on cloud-edge collaboration. In the first stage, the cloud server coordinates the user to train a partially optimized pre-training model. In the second stage, the edge server coordinates users to fine-tune the pre-training model. Experiments on real-world datasets show that TSFed can achieve a 21.54%–46.73% reduction in the number of communication rounds and a 29.83%–50.73% reduction in communication delay required to achieve the target prediction accuracy compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cirillo, F., Gómez, D., Diez, L., Maestro, I.E., Gilbert, T.B.J., Akhavan, R.: Smart city IoT services creation through large-scale collaboration. IEEE Internet Things J. 7(6), 5267–5275 (2020)

    Google Scholar 

  2. Li, T., Liu, W., Zeng, Z., Xiong, N.N.: DRLR: a deep reinforcement learning based recruitment scheme for massive data collections in 6G-based IoT networks. IEEE Internet Things J. 1–14 (2021)

    Google Scholar 

  3. Chen, X., Liang, W., Xu, J., Wang, C., Li, K.-C., Qiu, M.: An efficient service recommendation algorithm for cyber-physical-social systems. IEEE Trans. Netw. Sci. Eng. (2021)

    Google Scholar 

  4. Liang, W., Li, Y., Xu, J., Qin, Z., Li, K.C.: QoS prediction and adversarial attack protection for distributed services under DLAAS. IEEE Trans. Comput. pp. 1–14 (2021)

    Google Scholar 

  5. Liang, W., et al.: Spatial-temporal aware inductive graph neural network for c-its data recovery. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  6. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction for web services via collaborative filtering. In: IEEE International Conference on Web Services (ICWS 2007), pp. 439–446. IEEE (2007)

    Google Scholar 

  7. Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: An extended matrix factorization approach for QoS prediction in service selection. In: 2012 IEEE Ninth International Conference on Services Computing, pp. 162–169. IEEE (2012)

    Google Scholar 

  8. Voigt, P., Von dem Bussche, A.: The EU general data protection regulation (GDPR). A Practical Guide, 1st edn. Springer, Cham, 10(3152676), 10-5555 (2017). https://doi.org/10.1007/978-3-319-57959-7

  9. Zhou, H., Yang, G., Xiang, Y., Bai, Y., Wang, W.: A lightweight matrix factorization for recommendation with local differential privacy in big data. IEEE Trans. Big Data, 1–15 (2021)

    Google Scholar 

  10. Wang, C., Wang, S., Cheng, X., He, Y., Xiao, K., Fan, S.: A privacy and efficiency-oriented data sharing mechanism for IoTs. IEEE Trans. Big Data, 1–12 (2022)

    Google Scholar 

  11. Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for internet of things: recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutor. (2021)

    Google Scholar 

  12. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  13. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-iid data with reinforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1698–1707. IEEE (2020)

    Google Scholar 

  14. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  15. Zhang, Y., Pan, J., Qi, L., He, Q.: Privacy-preserving quality prediction for edge-based IoT services. Futur. Gener. Comput. Syst. 114, 336–348 (2021)

    Article  Google Scholar 

  16. Badsha, S., et al.: Privacy preserving location-aware personalized web service recommendations. IEEE Trans. Serv. Comput. pp. 1–14 (2018)

    Google Scholar 

  17. Badsha, S., Yi, X., Khalil, I., Liu, D., Nepal, S., Lam, K.-Y.: Privacy preserving user based web service recommendations. IEEE Access 6, 56647–56657 (2018)

    Article  Google Scholar 

  18. Gong, B., Xing, T., Liu, Z., Xi, W., Chen, X.: Adaptive client clustering for efficient federated learning over non-iid and imbalanced data. IEEE Trans. Big Data, 1–15 (2022)

    Google Scholar 

  19. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  20. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smithy, V.: Feddane: a federated newton-type method. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1227–1231. IEEE (2019)

    Google Scholar 

  21. Zhang, Y., Zhang, P., Luo, Y., Luo, J.: Efficient and privacy-preserving federated QoS prediction for cloud services. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 549–553. IEEE (2020)

    Google Scholar 

  22. Xu, J., Lin, J., Liang, W., Li, K.-C.: Privacy preserving personalized blockchain reliability prediction via federated learning in IoT environments. Cluster Comput. 1–12 (2021)

    Google Scholar 

  23. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service QoS prediction via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3), 289–299 (2012)

    Google Scholar 

  24. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32–39 (2012)

    Google Scholar 

  25. Xu, M., et al.: From cloud to edge: a first look at public edge platforms. In: Proceedings of the 21st ACM Internet Measurement Conference, pp. 37–53 (2021)

    Google Scholar 

  26. Shapiro, A., Wardi, Y.: Convergence analysis of gradient descent stochastic algorithms. J. Optim. Theory Appl. 91(2), 439–454 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, L., Zhang, J., Song, S.H., Letaief, K.B.: Client-edge-cloud hierarchical federated learning. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by 2021 Guangdong Province Special Fund for Science and Technology (“major special projects + task list”) Project (No. STKJ2021201), Guangdong Province Basic and Applied Basic Research Fund (No. 2021A1515012527), Special projects in key fields of Guangdong universities (No. 2022ZDZX1008) and in part by 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG08D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J., Li, Y., Xu, Z., She, W., Xu, J. (2022). TSFed: A Two-Stage Federated Learning Framework via Cloud-Edge Collaboration for Services QoS Prediction. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2022. ICWS 2022. Lecture Notes in Computer Science, vol 13736. Springer, Cham. https://doi.org/10.1007/978-3-031-23579-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23579-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23578-8

  • Online ISBN: 978-3-031-23579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics