Skip to main content

Exploration of Thermoelectric Energy Harvesting for Secure, TLS-Based Industrial IoT Nodes

  • Conference paper
  • First Online:
Internet of Things – ICIOT 2022 (ICIOT 2022)

Abstract

Security is one of the biggest challenges, particularly in the Industrial IoT and in critical infrastructures. Complex cryptographic computations are in contrast to the low energy budget of the devices, especially when independence from the power grid is required, as it is the case with retrofitted sensor nodes. Energy harvesting offers a promising alternative but tightens the energy constraints of the application further.

In this work, we investigate how IoT edge devices can be powered by thermal energy harvesting and concurrently meet the stringent TLS-based security requirements. We analyze a thermoelectric generator system at its lowest power output region and evaluate different energy storage technologies in a representative IoT architecture. Our results show that temperature gradients as low as 1 K are sufficient to enable secure connections every 20 min in a representative IIoT application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberto, A., Bos, J., Ducas, L., et al.: CRYSTALS-KYBER: Algorithm Specifications and Supporting Documentation (2021). https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf. Accessed 11 Feb 2022

  2. Bai, S., et al.: CRYSTALS-Dilithium – Algorithm Specifications and Supporting Documentation (Version 3.1). https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf. Accessed 30 Jan 2022

  3. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2 (2008). https://tools.ietf.org/html/rfc5246. Accessed 24 Feb 2022

  4. Elahi, H., Munir, K., Eugeni, M., Atek, S., Gaudenzi, P.: Energy harvesting towards self-powered IoT devices. Energies 13(21), 5528 (2020). https://www.mdpi.com/1996-1073/13/21/5528

  5. Enescu, D.: Thermoelectric energy harvesting: basic principles and applications. In: Enescu, D. (ed.) Green Energy Advances. IntechOpen, February 2019

    Google Scholar 

  6. Gruber, J.M., Mathis, S.: P3.6 - efficient boost converter for thermoelectric energy harvesting. In: Proceedings Sensor 2017, Wunstorf, Nürnberg, Germany, pp. 642–645. AMA Service GmbH (2017). http://www.ama-science.org/doi/10.5162/sensor2017/P3.6

  7. Haras, M., et al.: Thermoelectric energy conversion: how good can silicon be? Mater. Lett. 157, 193–196 (2015). https://linkinghub.elsevier.com/retrieve/pii/S0167577X15007235

  8. Hellaoui, H., Koudil, M., Bouabdallah, A.: Energy-efficient mechanisms in security of the Internet of Things: a survey. Comput. Netw. 127, 173–189 (2017). https://linkinghub.elsevier.com/retrieve/pii/S1389128617303146

  9. Kim Tuoi, T.T., Van Toan, N., Ono, T.: Heat storage thermoelectric generator for wireless IOT sensing systems. In: 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, pp. 924–927. IEEE, June 2021. https://ieeexplore.ieee.org/document/9495686/

  10. Lauer, F., Rheinlander, C.C., Kestel, C., Wehn, N.: Analysis and optimization of TLS-based security mechanisms for low power IoT systems. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, pp. 775–780. IEEE, May 2020. https://ieeexplore.ieee.org/document/9139743/

  11. Mades, J., Ebelt, G., Janjic, B., Lauer, F., Rheinlander, C.C., Wehn, N.: TLS-level security for low power industrial IoT network infrastructures. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, pp. 1720–1721. IEEE, March 2020. https://ieeexplore.ieee.org/document/9116285/

  12. Magno, M., Boyle, D.: Wearable energy harvesting: from body to battery. In: 2017 12th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), Palma de Mallorca, Spain, pp. 1–6. IEEE, April 2017. http://ieeexplore.ieee.org/document/7930169/

  13. Magno, M., Wang, X., Eggimann, M., Cavigelli, L., Benini, L.: InfiniWolf: energy efficient smart bracelet for edge computing with dual source energy harvesting. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, pp. 342–345. IEEE, March 2020

    Google Scholar 

  14. Matrix - prometheus. https://www.matrixindustries.com/prometheus

  15. Mbed TLS. https://github.com/Mbed-TLS/mbedtls

  16. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2(5), 466 (2009). http://xlink.rsc.org/?DOI=b822664b

  17. Paterova, T., Prauzek, M., Konecny, J., Bancik, K.: Thermoelectric generator powering study for an environmental-monitoring IoT device based on very low temperature differences. In: 2022 26th International Conference Electronics, Palanga, Lithuania, pp. 1–6. IEEE, June 2022

    Google Scholar 

  18. Pham, V.K.: A high-efficient power converter for thermoelectric energy harvesting. In: 2020 5th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, pp. 82–87. IEEE, November 2020. https://ieeexplore.ieee.org/document/9303126/

  19. Ramadass, Y.K., Chandrakasan, A.P.: A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage. In: 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, pp. 486–487. IEEE, February 2010. http://ieeexplore.ieee.org/document/5433835/

  20. Riot operating system. https://www.riot-os.org

  21. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial Internet of Things. In: Proceedings of the 52nd Annual Design Automation Conference, San Francisco California, pp. 1–6. ACM, June 2015. https://doi.org/10.1145/2744769.2747942

  22. Schöffel, M., Lauer, F., Rheinländer, C.C., Wehn, N.: On the energy costs of post-quantum KEMs in TLS-based low-power secure IoT. In: Proceedings of the International Conference on Internet-of-Things Design and Implementation, Charlottesvle, VA, USA, pp. 158–168. ACM, May 2021. https://doi.org/10.1145/3450268.3453528

  23. Schöffel, M., Lauer, F., Rheinländer, C.C., Wehn, N.: Secure IoT in the era of quantum computers-where are the bottlenecks? Sensors 22(7), 2484 (2022). https://www.mdpi.com/1424-8220/22/7/2484

  24. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). http://www.nature.com/articles/nmat2090

  25. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2. https://openquantumsafe.org

  26. Wan, Q., Teh, Y.K., Gao, Y., Mok, P.K.T.: Analysis and design of a thermoelectric energy harvesting system with reconfigurable array of thermoelectric generators for IoT applications. IEEE Trans. Circ. Syst. I Regul. Pap. 64(9), 2346–2358 (2017)

    Article  Google Scholar 

  27. Wang, W., Chen, X., Liu, Y., Wang, X., Liu, Z.: Thermo-electric energy harvesting powered IoT system design and energy model analysis. In: 2019 IEEE 13th International Conference on Anti-Counterfeiting, Security, and Identification (ASID), Xiamen, China, pp. 303–308. IEEE, October 2019

    Google Scholar 

  28. Yuan, F., Zhang, Q.T., Jin, S., Zhu, H.: Optimal harvest-use-store strategy for energy harvesting wireless systems. IEEE Trans. Wirel. Commun. 14(2), 698–710 (2015). https://ieeexplore.ieee.org/document/6898878

  29. Zhou, W., Zhang, Y., Liu, P.: The effect of IoT new features on security and privacy: new threats, existing solutions, and challenges yet to be solved. IEEE Internet Things J. 6(2), 1606–1616 (2019). arXiv:1802.03110 [cs]

Download references

Acknowledgement

This paper was partly founded by the German Federal Ministry of Education and Research as part of the project “SIKRIN-KRYPTOV” (16KIS1069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Lauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lauer, F., Schöffel, M., Rheinländer, C.C., Wehn, N. (2023). Exploration of Thermoelectric Energy Harvesting for Secure, TLS-Based Industrial IoT Nodes. In: Tekinerdogan, B., Wang, Y., Zhang, LJ. (eds) Internet of Things – ICIOT 2022. ICIOT 2022. Lecture Notes in Computer Science, vol 13735. Springer, Cham. https://doi.org/10.1007/978-3-031-23582-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23582-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23581-8

  • Online ISBN: 978-3-031-23582-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics