Skip to main content

Image Processing and Pattern Recognition of Micropores of Polysulfone Membrane for the Bio-separation of Viruses from Whole Blood

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2022)

Abstract

The VIVID™ GX membrane, is having great significance in clinical testing applications as well as the Lab-on-Chip Plasma Extraction. The designing and optimization of membrane-based devices is still an ongoing challenge for the researchers and direct fabrication and testing is the only option. The VIVID™ GX is the commercially available flat Polysulfone (PS) Plasma Membrane having asymmetric microporous structure, and clear demarcation of the pore boundaries is the key challenge to model the exact morphological details. The earlier modeling techniques still lacks the realization of the random distribution of micropores of this membrane including all possible variability in pore sizes from sub-micron to micron level. In this work we have proposed the procedure for Image Processing and Pattern Recognition of a microporous polymer membrane using MATLAB and COMSOL Multiphysics. We have traced the pore perimeter (contour) for the ‘front’, ‘back’ and ‘cross-section’ of the membrane employing the morphological operations for image processing. The retrieved perimeter pixelart is then employed for modeling the membrane structure in two domains viz. ‘solid content’ and ‘porous content’, for their clear demarcation. The proposed modeling strategy has a great potential in the field of optimization of Plasma Separators and other Microfluidics Lab-On-Chip Devices. We have successfully retrieved the pore range from approx.0.2 µm to 14 µm for the back-side and approx. upto 118 µm for the front-side for the samples under study. The proposed study has illustrated to the point processing and modeling strategy for the randomly distributed pores across the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shim, J.S., Ahn, C.H.: An on-chip whole blood/plasma separator using hetero-packed beads at the inlet of a microchannel. Lab Chip 12, 863–866 (2012). https://doi.org/10.1039/C2LC21009F

    Article  Google Scholar 

  2. Lee, K.K., Ahn, C.H.: A new on-chip whole blood/plasma separator driven by asymmetric capillary forces. Lab Chip (2013). https://doi.org/10.1039/C3LC50370D

    Article  Google Scholar 

  3. Woo, S.O., Oh, M., Nietfeld, K., Boehler, B., Choi, Y.: Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. Biomicrofluidics 15(3), 034106 (2021). https://doi.org/10.1063/5.005136

    Article  Google Scholar 

  4. Dimov, I.K., Basabe-Desmonts, L., Garcia-Cordero, J.L., Ross, B.M., Park, Y., Ricco, A.J., Lee, L.P.: Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11, 845–850 (2011). https://doi.org/10.1039/C0LC00403K

    Article  Google Scholar 

  5. Chen, X., Cui, D.F., Liu, C.C., Li, H.: Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuators B Chem. 130(1), 216–221 (2008). https://doi.org/10.1016/j.snb.2007.07.126

    Article  Google Scholar 

  6. VanDelinder, V., Groisman, A.: Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 78(11), 3765–3771 (2006). https://doi.org/10.1021/ac060042r

    Article  Google Scholar 

  7. Tachi, T., Kaji, N., Tokeshi, M., Baba, Y.: Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal. Chem. 81(8), 3194–3198 (2009). https://doi.org/10.1021/ac802434z

    Article  Google Scholar 

  8. Amasia, M., Madou, M.: Large volume centrifugal microfluidic device for blood plasma separation. Bioanalysis 2, 1701–1710 (2010). https://doi.org/10.4155/bio.10.140

    Article  Google Scholar 

  9. Gorkin, R., et al.: Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758–1773 (2010). https://doi.org/10.1039/B924109D

    Article  Google Scholar 

  10. Zhao, C., Cheng, X.: Microfluidic separation of viruses from blood cells based on intrinsic transport processes. Biomicrofluidics 5(3), 032004-032004-10 (2011). https://doi.org/10.1063/1.3609262

  11. Sun, M., Khan, Z.S., Vanapalli, S.A.: Blood plasma separation in a long two-phase plug flowing through disposable tubing. Lab Chip 12, 5225–5230 (2012). https://doi.org/10.1039/C2LC40544J

    Article  Google Scholar 

  12. Panaro, N.J., Lou, X.J., Fortina, P., Kricka, L.J., Wilding, P.: Micropillar array chip for integrated white blood cell isolation and PCR. Biomol. Eng. 21(6), 157–162 (2005). https://doi.org/10.1016/j.bioeng.2004.11.001

    Article  Google Scholar 

  13. Wang, S.Q., et al.: Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int. J. Nanomed. 7, 5019–5028 (2012). https://doi.org/10.2147/IJN.S32579

    Article  Google Scholar 

  14. Liu, C., et al.: A high-efficiency superhydrophobic plasma separator. R. Soc. Chem. Lab Chip 16, 553–560 (2016). https://doi.org/10.1039/C5LC01235J

    Article  Google Scholar 

  15. Su, X., et al.: High-Efficiency Plasma Separator Based on Immunocapture and Filtration. Micromachines 11(4), 352 (2020). https://doi.org/10.3390/mi11040352

    Article  Google Scholar 

  16. Lopresti, F., et al.: Engineered membranes for residual cell trapping on microfluidic blood plasma separation systems: a comparison between porous and nanofibrous membranes. Membranes 11(9), 680 (2021). https://doi.org/10.3390/membranes11090680

    Article  Google Scholar 

  17. Liu, C., et al.: Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem. 85(21), 10463–10470 (2013). https://doi.org/10.1021/ac402459h

    Article  Google Scholar 

  18. Homsy, A., et al.: Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood. Biomicrofluidics 6(1), 12804–128049 (2012). https://doi.org/10.1063/1.3672188

    Article  Google Scholar 

  19. Yang, X., Forouzan, O., Brown, T.P., Shevkoplyas, S.S.: Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12, 274–280 (2012). https://doi.org/10.1039/C1LC20803A

    Article  Google Scholar 

  20. Songjaroen, T., Dungchai, W., Chailapakul, O., Henry, C.S., Laiwattanapaisal, W.: Blood separation on microfluidic paper-based analytical devices. Lab Chip 12, 3392–3398 (2012). https://doi.org/10.1039/C2LC21299D

    Article  Google Scholar 

  21. Thorslund, S., Klett, O., Nikolajeff, F., Markides, K., Bergquist, J.: A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevice 8(1), 73–79 (2006). https://doi.org/10.1007/s10544-006-6385-7

    Article  Google Scholar 

  22. Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016). https://doi.org/10.1016/j.jconhyd.2016.07.002

    Article  Google Scholar 

  23. Hu, Y., Wang, Q., Zhao, J., Xie, S., Jiang, H.: A novel porous media permeability model based on fractal theory and ideal particle pore-space geometry assumption. Energies 13(2), 510 (2020). https://doi.org/10.3390/en13030510

    Article  Google Scholar 

  24. Tan, X., Rodrigue, D.: A review on porous polymeric membrane preparation. Part I: production techniques with polysulfone and poly (vinylidene fluoride). Polymers 11, 1160 (2019). https://doi.org/10.3390/polym11071160

    Article  Google Scholar 

  25. Barth, C., Gonçalves, M.C., Pires, A.T.N., Roeder, J., Wolf, B.A.: Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J. Membr. Sci. 169(2), 287–299 (2000). https://doi.org/10.1016/S0376-7388(99)00344-0

    Article  Google Scholar 

  26. Sofian, M.S.M., et al.: Effect of solvent concentration on performance of polysulfone membrane for filtration and separation. IOP Conf. Ser.: Mater. Sci. Eng. 226, 012171 (2017). https://doi.org/10.1088/1757-899x/226/1/012171

Download references

Acknowledgement

The research work is funded by the DST, Ministry of Science & Technology, Govt. of India, under the Women Scientist-B KIRAN Project Grant (DST/WOS-B/HN-17/2021). The authors express their gratitude to Pall Corporation, Mumbai, India for timely providing Vivid® GX-Membrane. The authors are also thankful to Prof. Sahab Das, Head, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute (DEI), for providing the FESSEM Lab Facilities and to Dr. Manju Srivastav for assisting with SEM Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamima Khatoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khatoon, S., Ahmad, G. (2023). Image Processing and Pattern Recognition of Micropores of Polysulfone Membrane for the Bio-separation of Viruses from Whole Blood. In: Santosh, K., Goyal, A., Aouada, D., Makkar, A., Chiang, YY., Singh, S.K. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2022. Communications in Computer and Information Science, vol 1704. Springer, Cham. https://doi.org/10.1007/978-3-031-23599-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23599-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23598-6

  • Online ISBN: 978-3-031-23599-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics