Skip to main content

Motor Imagery Classification Combining Riemannian Geometry and Artificial Neural Networks

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2022)

Abstract

Brain-computer interfaces (BCIs) based on non-invasive electroencephalography provide a means of communication for people with severe disabilities. BCI based on the detection of motor imagery can be used for both communication and rehabilitation purposes [8]. For transferring BCIs outside of the lab to clinical settings, it is necessary to have a high accuracy. The current state of the art techniques includes the use of distance based on the Riemannian geometry. In this paper, we propose a new pattern recognition system for the multiclass classification of brain evoked responses corresponding to motor imagery. The method is based on the combination of features based on Riemannian geometry obtained from 15 frequency bands from 8 24 Hz to cover the mu and beta bands, and a feedforward neural network for the classification. We compare the performance of the multi-layer perceptron (MLP) and the extreme learning machine (ELM) classifiers. The system has been assessed on two publicly available datasets. The kappa value for 4-class is 0.53. The average binary classification across the six pairwise tasks is 80.83%. The results support the conclusion that multi-band classification can be successfully achieved using artificial neural networks and MLPs provide substantially better performance than ELMs approaches.

This study was supported by the NIH-R15 NS118581 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b. Front. Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  2. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans. on Biomed. Eng. 59, 920–928 (2012)

    Article  Google Scholar 

  3. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Riemannian geometry applied to BCI classification. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 629–636. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15995-4_78

    Chapter  Google Scholar 

  4. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans. on Biomed. Eng. 59(4), 920–928 (2011)

    Article  Google Scholar 

  5. Brunner, C.: Four class motor imagery (001–2014) (2020). http://bnci-horizon-2020.eu/database/data-sets

  6. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI competition 2008-graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, vol. 16, pp. 1–6 (2008)

    Google Scholar 

  7. Chatterjee, R., Sanyal, D.K.: Study of different filter bank approaches in motor-imagery EEG. Smart Health. Analy. IoT Enabled Environ. 178, 173 (2020)

    Article  Google Scholar 

  8. Chowdhury, A., et al.: Active physical practice followed by mental practice using bci-driven hand exoskeleton: A pilot trial for clinical effectiveness and usability. IEEE J. Biomed. Health Inform. 22(6), 1786–1795 (2018). https://doi.org/10.1109/JBHI.2018.2863212

    Article  Google Scholar 

  9. Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and riemannian geometry. Expert Syst. Appl. 95, 201–211 (2018)

    Article  Google Scholar 

  10. Ilyas, M.Z., Saad, P., Ahmad, M.I.: A survey of analysis and classification of EEG signals for brain-computer interfaces. In: 2015 2nd International Conference on Biomedical Engineering (ICoBE), pp. 1–6. IEEE (2015)

    Google Scholar 

  11. Khasnobish, A., Bhattacharyya, S., Konar, A., Tibarewala, D.: K-nearest neighbor classification of left-right limb movement using EEG data. In: Oral Presentation In International Conference On Biomedical Engineering And Assistive Technologies, NIT Jalandhar (2010)

    Google Scholar 

  12. Lakshmi, M.R., Prasad, T., Prakash, D.V.C.: Survey on EEG signal processing methods. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(1), 195–212 (2014)

    Google Scholar 

  13. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  14. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735–747 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007)

    Article  Google Scholar 

  16. Pfurtscheller, G.: Functional brain imaging based on erd/ers. Vision. Res. 41(10–11), 1257–1260 (2001)

    Article  Google Scholar 

  17. Raza, H., Cecotti, H., Li, Y., Prasad, G.: Adaptive learning with covariate shift-detection for motor imagery based brain-computer interface. Soft. Comput. 20(8), 3085–3096 (2016)

    Article  Google Scholar 

  18. Raza, H., Cecotti, H., Prasad, G.: Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–7 (2015)

    Google Scholar 

  19. Raza, H., Rathee, D., Zhou, S.M., Cecotti, H., Prasad, G.: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface. Neurocomputing 343, 154–166 (2018)

    Article  Google Scholar 

  20. Steyrl, D.: Two class motor imagery (002–2014) (2020). http://bnci-horizon-2020.eu/database/data-sets

  21. Tang, Z., Li, C., Sun, S.: Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik 130, 11–18 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Cecotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cecotti, H., Tiwale, G. (2023). Motor Imagery Classification Combining Riemannian Geometry and Artificial Neural Networks. In: Santosh, K., Goyal, A., Aouada, D., Makkar, A., Chiang, YY., Singh, S.K. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2022. Communications in Computer and Information Science, vol 1704. Springer, Cham. https://doi.org/10.1007/978-3-031-23599-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23599-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23598-6

  • Online ISBN: 978-3-031-23599-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics