Skip to main content

2D Oxide Picture Languages and Their Properties

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2022)

Abstract

In the theory of formal languages, two-dimensional (picture) languages are a generalization of string languages to two dimensions. Pictures may be regarded as digitized finite arrays, occurring in studies concerning pattern recognition, image analysis, cellular automata, and parallel computing. Several studies have been done for generating and (or) recognizing rectangular, triangular, and hexagonal arrays using formal syntactic methods. Motivated by oxide molecular structures, the oxide pictures, a special class of two-dimensional pictures, are considered. Various generating and recognizing schemes, such as the Oxide Tiling System (OXTS), Oxide Wang System (OXWS), Oxide Tile Rewriting Grammar (OXTRG), and Oxide Sgraffito Automata (OXS), have been developed recently. It is found that the family of oxide picture languages recognizable by oxide tiling systems is closed under union, overlapping, half-turn, transpose, anti-transpose, and reflection (both along horizontal and vertical lines), but not closed under quarter-turn and anti-quarter-turn. This paper further discusses some language theoretic results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dersanambika, K.S., Krithivasan, K., Martín-Vide, C., Subramanian, K.G.: Local and recognizable hexagonal picture languages. IJPRAI 19(7), 853–871 (2005)

    Google Scholar 

  3. Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Simple picture processing based on finite automata and regular grammars. J. Comput. Syst. Sci. 95, 232–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–267. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_4

    Chapter  Google Scholar 

  5. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting from the cut operation. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 190–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8_14

    Chapter  Google Scholar 

  6. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the trihexagonal grid. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 82–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_8

    Chapter  Google Scholar 

  7. Krithivasan, K., Siromoney, R.: Array automata and operations on array languages. Int. J. Comput. Math. 4(A), 3–40 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Manuel, P., Rajasingh, I.: Topological properties of silicate networks. In: 5th IEEE GCC Conference and Exhibition (2009)

    Google Scholar 

  9. Nagata, S., Thamburaj, R.: Digitalization of kolam patterns and tactile kolam tools. In: Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.) Formal Models, Languages and Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 354–363. World Scientific (2007)

    Google Scholar 

  10. Nagy, B.: Generalised triangular grids in digital geometry. Acta Math. Acad. Paedag. Nyiregyhaziensis 20(1), 63–78 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Paramasivan, M.: Operations on graphs, arrays and automata. Ph.D. thesis, University of Trier, Germany (2018)

    Google Scholar 

  12. Ponraj, H.V., Thamburaj, R.: Oxide tiling system and oxide Wang system. Int. J. Curr. Trends Eng. Technol. 4(2), 105–110 (2018)

    Google Scholar 

  13. Ponraj, H.V., Thamburaj, R.: Generative aspects of oxide pictures by oxide tile rewriting grammar. Int. J. Recent Technol. Eng. (IJRTE) 8(3), 1537–1543 (2019)

    Article  Google Scholar 

  14. Ponraj, H.V., Thamburaj, R.: Recognizability of oxide pictures by Sgraffito automata. J. Adv. Res. Dyn. Control Syst. (JARDCS) 11(1), 285–293 (2019)

    Google Scholar 

  15. Ponraj, H.V., Thamburaj, R., Paramasivan, M.: Two-dimensional oxide picture languages. In: Proceedings of the 17th International Symposium on Artificial Intelligence and Mathematics 2022 (ISAIM 2022), Fort Lauderdale, Florida, USA, 3–5 January 2022 (2022)

    Google Scholar 

  16. de Prophetis, L., Varricchio, S.: Recognizability of rectangular pictures by Wang systems. J. Autom. Lang. Comb. 2(4), 269–288 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Průša, D., Mráz, F., Otto, F.: Two-dimensional Sgraffito automata. RAIRO Theor. Inform. Appl. 48(5), 505–539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rajaselvi, V.D., Kalyani, T., Dare, V.R., Thomas, D.G.: Recognizability of triangular picture languages by triangular Wang automata. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) Proceedings of the Third International Conference on Soft Computing for Problem Solving. AISC, vol. 258, pp. 481–493. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1771-8_42

    Chapter  Google Scholar 

  19. Simonraj, F., George, A.: Topological properties of few poly oxide, poly silicate, DOX and DSL networks. Int. J. Future Comput. Commun. 2, 90–95 (2013)

    Article  Google Scholar 

  20. Siromoney, G., Siromoney, R.: Hexagonal arrays and rectangular blocks. Comput. Graph. Image Process. 5, 353–381 (1976)

    Article  MATH  Google Scholar 

  21. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewriting rules. Inf. Control (Now Inf. Comput.) 22(5), 447–470 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, T.J., Salomaa, K.: Recognition and complexity results for projection languages of two-dimensional automata. In: Jirásková, G., Pighizzini, G. (eds.) DCFS 2020. LNCS, vol. 12442, pp. 206–218. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62536-8_17

    Chapter  Google Scholar 

  23. Smith, T.J., Salomaa, K.: Concatenation operations and restricted variants of two-dimensional automata. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 147–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67731-2_11

    Chapter  Google Scholar 

  24. Smith, T.J., Salomaa, K.: Decision problems and projection languages for restricted variants of two-dimensional automata. Theor. Comput. Sci. 870, 153–164 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Subramanian, K.G.: Hexagonal array grammars. Comput. Graph. Image Process. 10, 388–394 (1979)

    Article  Google Scholar 

  26. Subramanian, K.G., Revathi, L., Siromoney, R.: Siromoney array grammars and applications. Int. J. Pattern Recognit. Artif. Intell. 3, 333–351 (1989)

    Article  Google Scholar 

  27. Thamburaj, R.: A study on circular languages, patterns and map systems. Ph.D. thesis, University of Madras, Chennai (2002)

    Google Scholar 

  28. Thamburaj, R.: Extended pasting scheme for kolam pattern generation. Forma 22, 55–64 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Robinson, T., Jebasingh, S., Nagar, A.K., Subramanian, K.G.: Tile pasting systems for tessellation and tiling patterns. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 72–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12712-0_7

    Chapter  Google Scholar 

  30. Thomas, D.G., Begam, M.H., David, N.G., de la Higuera, C.: Hexagonal array acceptors and learning. In: Mukund, M., Rangarajan, K., Subramanian, K.G. (eds.) Formal Models, Languages and Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 364–378. World Scientific (2007)

    Google Scholar 

  31. Yanagisawa, K., Nagata, S.: Fundamental study on design system of kolam pattern. Forma 22, 31–46 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their very useful comments, which helped to improve the presentation of the paper. The third author would like to express gratitude to the University of Trier, Germany, and Madras Christian College in Chennai, India, for visits in 2019 and 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helen Vijitha Ponraj , Robinson Thamburaj or Meenakshi Paramasivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponraj, H.V., Thamburaj, R., Paramasivan, M. (2023). 2D Oxide Picture Languages and Their Properties. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23612-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23611-2

  • Online ISBN: 978-3-031-23612-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics