Abstract
2D-representations of 3D digital objects find versatile applications to computer vision, robotics, medical imaging, and in discrete geometry. This work presents an algorithm for constructing a planar embedding with only straight-line edges for a general non-intersecting orthogonal polyhedron that has genus 0. We discover certain characterizations of vertices and edges of a polyhedron that lead to efficient graph-drawing on the 2D plane. The original orthogonal polyhedron can be fully reconstructed from this graph provided the information regarding the coordinates of vertices, are preserved. The time complexity of the proposed embedding is linear in the number of edges of the orthogonal polyhedron.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilera, A.: Orthogonal Polyhedra: Study and Application. Ph.D. thesis, Universitat Polit\(\acute{e}\)cnica de Catalunya (1998)
Alexa, M.: Merging polyhedral shapes with scattered features. In: Proceedings of the International Conference on Shape Modeling and Applications, SMI 1999, p. 202 (1999)
Alexa, M.: Merging polyhedral shapes with scattered features. Vis. Comput. 16(1), 26–37 (2000)
Batini, C., Nardelli, E., Talamo, M., Tamassia, R.: A Grap-theoretic approach to aesthetic layout of information systems diagrams. In: 10th International Workshop on Graph-theoretic Concepts in Computer Science, Trauner Verlag, Berlin, pp. 9–18 (1984)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)
Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry-Algorithms and Applications, 3rd edn. Springer, Heidelberg (1997)
Biedl, T.C., Genc, B.: When can a graph form an orthogonal polyhedron? In: Canadian Conference On Computational Geometry, pp. 53–56 (2004)
Biedl, T., Genc, B.: Cauchy’s theorem for orthogonal polyhedra of genus 0. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 71–82. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_7
Cruz, I.F., Tamassia, R.: Graph Drawing Tutorial. http://cs.brown.edu/people/rtamassi/gd-tutorial.html
Deo, N.: Graph Theory with Application to Engineering and Computer Science. PHI Learning Private Limited, New Delhi (2009)
Duijvestijn, A.J.W.: The number of polyhedral (3-connected planar) graphs. Math. Comput. 65, 1289–1293 (1996)
Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)
Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 212–223. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021805
Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_9
Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra. In: Proceeedings 2010 Annual Symposium on Computational Geometry, SoCG 2010, ACM, New York, USA, pp. 429–438 (2010)
Genc, B.: Reconstruction of Orthogonal Polyhedra. Ph.D. thesis, University of Waterloo (2008)
Grünbaum, B.: Graphs of polyhedra. Polyhedra Graphs. Discrete Math. 307(3–5), 445–463 (2007)
Henk, M., Richter-Gebert, J., Ziegler, G.M.: Basic properties of convex polytopes, second edn. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 15, pp. 243–270. CRC Press LLC, Boca Raton, FL, USA (2004)
Hong, S.H., Nagamochi, H.: Extending Steinitz’s theorem to upward star-shaped polyhedra and spherical polyhedra. Algorithmica 61(4), 1022–1076 (2011)
Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of 3D orthogonal cover of a digital object. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 70–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_9
Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinatorial algorithm to construct 3D isothetic covers. Int. J. Comput. Math. 90(8), 1571–1606 (2013)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: International Symposium on Theory of Graphs, Gordon and Breach, New York, pp. 215–232 (1967)
Lipton, R., North, S., Sandberg, J.: A method for drawing graphs. In: ACM Symposium on Computational Geometry, pp. 153–160 (1985)
Orbani\(\acute{c}\), A., Boben, M., Jaklič, G., Pisanski, T.: Algorithms for drawing polyhedra from 3-connected planar graphs. Spec. Issue: Theor. Comput. Sci. Guest Editors: Boštjan Vilfan 28, 239–243 (2004)
O’Rourke, J.: Unfolding orthogonal polyhedra. Contemp. Math. 453, 307 (2008)
Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 164. Springer-Verlag, Berlin (1996)
Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings 1st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)
Tamassia, R.: Planar orthogonal drawings of graphs. In: IEEE International Symposium on Circuits and Systems, vol. 1, pp. 319–322 (1990)
Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. SMC-18(1), 61–79 (1988)
Tarjan, R.E.: Algorithm design. Commun. ACM 30(3), 205–212 (1987)
Ziegler, G.M.: Convex Polytopes: Extremal Constructions and f -Vector Shapes, vol. 14. IAS/Park City Mathematics, Salt Lake City (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Karmakar, N., Biswas, A., Nandy, S.C., Bhattacharya, B.B. (2023). On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-23612-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23611-2
Online ISBN: 978-3-031-23612-9
eBook Packages: Computer ScienceComputer Science (R0)