Skip to main content

On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13348))

Included in the following conference series:

  • 248 Accesses

Abstract

2D-representations of 3D digital objects find versatile applications to computer vision, robotics, medical imaging, and in discrete geometry. This work presents an algorithm for constructing a planar embedding with only straight-line edges for a general non-intersecting orthogonal polyhedron that has genus 0. We discover certain characterizations of vertices and edges of a polyhedron that lead to efficient graph-drawing on the 2D plane. The original orthogonal polyhedron can be fully reconstructed from this graph provided the information regarding the coordinates of vertices, are preserved. The time complexity of the proposed embedding is linear in the number of edges of the orthogonal polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera, A.: Orthogonal Polyhedra: Study and Application. Ph.D. thesis, Universitat Polit\(\acute{e}\)cnica de Catalunya (1998)

    Google Scholar 

  2. Alexa, M.: Merging polyhedral shapes with scattered features. In: Proceedings of the International Conference on Shape Modeling and Applications, SMI 1999, p. 202 (1999)

    Google Scholar 

  3. Alexa, M.: Merging polyhedral shapes with scattered features. Vis. Comput. 16(1), 26–37 (2000)

    Article  MATH  Google Scholar 

  4. Batini, C., Nardelli, E., Talamo, M., Tamassia, R.: A Grap-theoretic approach to aesthetic layout of information systems diagrams. In: 10th International Workshop on Graph-theoretic Concepts in Computer Science, Trauner Verlag, Berlin, pp. 9–18 (1984)

    Google Scholar 

  5. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4(5), 235–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry-Algorithms and Applications, 3rd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  7. Biedl, T.C., Genc, B.: When can a graph form an orthogonal polyhedron? In: Canadian Conference On Computational Geometry, pp. 53–56 (2004)

    Google Scholar 

  8. Biedl, T., Genc, B.: Cauchy’s theorem for orthogonal polyhedra of genus 0. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 71–82. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_7

    Chapter  Google Scholar 

  9. Cruz, I.F., Tamassia, R.: Graph Drawing Tutorial. http://cs.brown.edu/people/rtamassi/gd-tutorial.html

  10. Deo, N.: Graph Theory with Application to Engineering and Computer Science. PHI Learning Private Limited, New Delhi (2009)

    Google Scholar 

  11. Duijvestijn, A.J.W.: The number of polyhedral (3-connected planar) graphs. Math. Comput. 65, 1289–1293 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  13. Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 212–223. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021805

    Chapter  Google Scholar 

  14. Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_9

    Chapter  MATH  Google Scholar 

  15. Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra. In: Proceeedings 2010 Annual Symposium on Computational Geometry, SoCG 2010, ACM, New York, USA, pp. 429–438 (2010)

    Google Scholar 

  16. Genc, B.: Reconstruction of Orthogonal Polyhedra. Ph.D. thesis, University of Waterloo (2008)

    Google Scholar 

  17. Grünbaum, B.: Graphs of polyhedra. Polyhedra Graphs. Discrete Math. 307(3–5), 445–463 (2007)

    Article  MATH  Google Scholar 

  18. Henk, M., Richter-Gebert, J., Ziegler, G.M.: Basic properties of convex polytopes, second edn. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 15, pp. 243–270. CRC Press LLC, Boca Raton, FL, USA (2004)

    Google Scholar 

  19. Hong, S.H., Nagamochi, H.: Extending Steinitz’s theorem to upward star-shaped polyhedra and spherical polyhedra. Algorithmica 61(4), 1022–1076 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of 3D orthogonal cover of a digital object. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 70–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_9

    Chapter  Google Scholar 

  22. Karmakar, N., Biswas, A., Bhowmick, P., Bhattacharya, B.B.: A combinatorial algorithm to construct 3D isothetic covers. Int. J. Comput. Math. 90(8), 1571–1606 (2013)

    Article  MATH  Google Scholar 

  23. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  24. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: International Symposium on Theory of Graphs, Gordon and Breach, New York, pp. 215–232 (1967)

    Google Scholar 

  25. Lipton, R., North, S., Sandberg, J.: A method for drawing graphs. In: ACM Symposium on Computational Geometry, pp. 153–160 (1985)

    Google Scholar 

  26. Orbani\(\acute{c}\), A., Boben, M., Jaklič, G., Pisanski, T.: Algorithms for drawing polyhedra from 3-connected planar graphs. Spec. Issue: Theor. Comput. Sci. Guest Editors: Boštjan Vilfan 28, 239–243 (2004)

    Google Scholar 

  27. O’Rourke, J.: Unfolding orthogonal polyhedra. Contemp. Math. 453, 307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 164. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

  29. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings 1st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)

    Google Scholar 

  30. Tamassia, R.: Planar orthogonal drawings of graphs. In: IEEE International Symposium on Circuits and Systems, vol. 1, pp. 319–322 (1990)

    Google Scholar 

  31. Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. SMC-18(1), 61–79 (1988)

    Google Scholar 

  32. Tarjan, R.E.: Algorithm design. Commun. ACM 30(3), 205–212 (1987)

    Article  MathSciNet  Google Scholar 

  33. Ziegler, G.M.: Convex Polytopes: Extremal Constructions and f -Vector Shapes, vol. 14. IAS/Park City Mathematics, Salt Lake City (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karmakar, N., Biswas, A., Nandy, S.C., Bhattacharya, B.B. (2023). On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23612-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23611-2

  • Online ISBN: 978-3-031-23612-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics