Skip to main content

Anomaly Detection for Physical Threat Intelligence

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Anomaly detection is a machine learning task that has been investigated within diverse research areas and application domains. In this paper, we performed anomaly detection for Physical Threat Intelligence. Specifically, we performed anomaly detection for air pollution and public transport traffic analysis for the city of Oslo, Norway. To this aim, the state-of-the-art method SparkGHSOM was considered to learn predictive models for normal (i.e. regular) scenarios of air quality and traffic jams in a distributed fashion. Furthermore, we extended the main algorithm to make the detected anomalies explainable through an instance-based feature ranking approach. The results showed that SparkGHSOM is able to detect anomalies for both the real applications considered in this study, despite the fact it was designed for different tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://api.nilu.no/.

  2. 2.

    https://api.entur.io/realtime/v1/rest/vm?datasetId=RUT.

References

  1. Corizzo, R., Ceci, M., Pio, G., Mignone, P., Japkowicz, N.: Spatially-aware autoencoders for detecting contextual anomalies in geo-distributed data. In: Soares, C., Torgo, L. (eds.) Discovery Science, pp. 461–471. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  2. Gonçalves, P.M., Jr., Barros, R.S.: RCD: a recurring concept drift framework. Patt. Recogn. Lett. 34(9), 1018–1025 (2013). https://doi.org/10.1016/j.patrec.2013.02.005

    Article  Google Scholar 

  3. Hsu, C.C.: Generalizing self-organizing map for categorical data. IEEE Trans. Neural Networks 17(2), 294–304 (2006). https://doi.org/10.1109/TNN.2005.863415

    Article  Google Scholar 

  4. Kader, G.D., Perry, M.: Variability for categorical variables. J. Stat. Educ. 15(2) (2007). https://doi.org/10.1080/10691898.2007.11889465

  5. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990). https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  6. Malondkar, A., Corizzo, R., Kiringa, I., Ceci, M., Japkowicz, N.: Spark-GHSOM: growing hierarchical self-organizing map for large scale mixed attribute datasets. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.12.007

    Article  Google Scholar 

  7. Redavid, D., Corizzo, R., Malerba, D.: An owl ontology for supporting semantic services in big data platforms. In: 2018 IEEE International Congress on Big Data (BigData Congress), pp. 228–231 (2018). https://doi.org/10.1109/BigDataCongress.2018.00039

  8. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  9. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network regression with predictive clustering trees. Data Mining Knowl. Disc. 25(2), 378–413 (2012). https://doi.org/10.1007/s10618-012-0278-6

    Article  MATH  Google Scholar 

Download references

Acknowledgment

We acknowledge the project IMPETUS (Intelligent Management of Processes, Ethics and Technology for Urban Safety) that receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 883286. https://cordis.europa.eu/project/id/883286. Dr. Paolo Mignone acknowledges the support of Apulia Region through the REFIN project “Metodi per l’ottimizzazione delle reti di distribuzione di energia e per la pianificazione di interventi manutentivi ed evolutivi” (CUP H94I20000410008, Grant n. 7EDD092A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mignone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mignone, P., Malerba, D., Ceci, M. (2023). Anomaly Detection for Physical Threat Intelligence. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics