Skip to main content

Shrinkage Estimators for Uplift Regression

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

To evaluate the efficiency of the marketing campaign or medical treatment, we divide our population into two subgroups: treatment (on which action is taken) and control (on which no action is taken), and predict the difference between effects observed in both groups. In our paper, we propose new shrinkage modifications for one of the uplift estimators called the corrected estimator. These shrinkage improvements are based on James-Stein and Ohtani approach for linear regression. In our paper, we analyze the theoretical properties of new shrinkage-corrected uplift estimators and analyze numerical results on simulated and real-life data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efron, B., Hastie, T.: Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, 1st edn. Cambridge University Press, New York (2016)

    Book  MATH  Google Scholar 

  2. Grabarczyk, M.: Estymatory ściągające w modelowaniu przyczynowym. Ph.D., M.Sc. thesis, Warsaw University of Technology (2022)

    Google Scholar 

  3. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81(396), 945–960 (1986)

    Article  MATH  Google Scholar 

  4. James, W., Stein, C.: Estimation with quadratic loss. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379 (1961).

    Google Scholar 

  5. Lalonde, R.: Evaluating the econometric evaluations of training programs. Am. Econ. Rev. 76, 604–620 (1986)

    Google Scholar 

  6. Ohtani, K.: Exact small sample properties of an operational variant of the minimum mean squared error estimator. Commun. Stat. Theory Methods 25(6), 1223–1231 (1996)

    Article  MATH  Google Scholar 

  7. Rudaś, K.: Linear regression for uplift modeling. Ph.D. thesis, Warsaw University of Technology (2021)

    Google Scholar 

  8. Rudaś, K., Jaroszewicz, S.: Linear regression for uplift modeling. Data Min. Knowl. Disc. 32(5), 1275–1305 (2018). https://doi.org/10.1007/s10618-018-0576-8

    Article  MATH  Google Scholar 

  9. Theil, H.: Principles of Econometrics. John Wiley, New York (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rudaś .

Editor information

Editors and Affiliations

Proof of Theorem 1

Proof of Theorem 1

Proof

Notice that inequality in the thesis can be presented as:

$$\textrm{E}\left[ (\beta ^U - \hat{\beta }^U_{cJS})' X'X (\beta ^U - \hat{\beta }^U_{cJS})\right] \le \textrm{E}\left[ (\beta ^U - \hat{\beta }^U_{c})' X'X (\beta ^U - \hat{\beta }^U_{c})\right] .$$

Assuming that, \(\beta ^T = \beta ^C,\) we obtain that \(\beta ^U = 0.\) Then, we may reduce following expression to the following form:

$$\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' X'X {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \le \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' X'X {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] .$$

We structure the proof as follows:

  • we will show: \(\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' X'X {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \le \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \)

  • we will show: \(\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \le 4 \sigma ^2 p\)

  • we will show: \(\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' X'X {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \ge 4 \sigma ^2 p\). This will finish the proof.

Consider left side of inequality. Assuming \(W \ge X'X\) we obtain \(\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' X'X {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \le \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] .\)

Now we will consider expression \(\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] .\) We will show that:

(11)

Starting from the right side of the equation:

$$\begin{aligned}&\textrm{E}\left[ ({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})' W ({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})\right] - \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] + 2 \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \\ {}&= \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}- 2{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}+ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}+ 2 {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \\ {}&= \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\right] \end{aligned}$$

We show that Eq. (11) is correct. Now we will consider parts and separately. We start with \(({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})\) from

$$\begin{aligned} {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}= \left( 1- \dfrac{p-2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^{-1}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}- {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}= \dfrac{p-2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^{-1}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\end{aligned}$$

Using the fact that \(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}= 4 \sigma ^2 W^{-1},\) we may write as:

$$\begin{aligned} \begin{aligned}&\textrm{E}\left[ \left( \dfrac{p-2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^{-1}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right) 'W \left( \dfrac{p-2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^{-1}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right) \right] \\ {}&= \textrm{E}\left[ \left( \dfrac{p-2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'(\text {Var}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^{-1}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}} \right) ^2 {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \\&= \textrm{E}\left[ \left( \dfrac{(p-2)4 \sigma ^2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}} \right) ^2 {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] = \textrm{E}\left[ \dfrac{(p-2)^24^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right] \end{aligned} \end{aligned}$$

Now we will consider Notice that this is a one-dimensional expression. Using the trace operator we obtain:

$$\begin{aligned} \begin{aligned}&\textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] = \text {Tr} \left\{ \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \right\} = \textrm{E}\left[ \text {Tr} \left\{ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right\} \right] \\&= \textrm{E}\left[ \text {Tr} \left\{ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W \right\} \right] = \text {Tr} \left\{ \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W \right] \right\} = \text {Tr} \left\{ \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' \right] W \right\} \end{aligned} \end{aligned}$$

When \(\beta ^T = \beta ^C\) we have \(\textrm{E}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}= \beta ^U =0.\) So we may write as:

$$\begin{aligned} \begin{aligned}&\text {Tr} \left\{ \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' \right] W \right\} = \text {Tr} \left\{ \textrm{E}\left[ ({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}- \textrm{E}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}- \textrm{E}{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})' \right] W \right\} = \text {Tr} \left\{ \text {Var} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}W \right\} \\&= \text {Tr} \left\{ 4 \sigma ^2\,W^{-1} W \right\} = \text {Tr} \left\{ 4 \sigma ^2 I_p \right\} = 4 \sigma ^2 p \end{aligned} \end{aligned}$$

Now we will consider

$$\begin{aligned} \begin{aligned} \textrm{E}\left[ {{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] = \textrm{E}\left[ \sum _{i=1}^p ({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}})_i [W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}]_i \right] = \sum _{i=1}^p \textrm{E}\left[ ({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}})_i(W)_{i \boldsymbol{\cdot }} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \end{aligned} \end{aligned}$$

Firstly we need the density formula for \({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}.\) We notice that \({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\) has a normal distribution with 0 mean and variance equal to \( 4 \sigma ^2 W^{-1}.\) Then density of \({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\) is given by the formula:

$$\begin{aligned} f({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}) = \dfrac{1}{(2 \pi )^{p/2}|4 \sigma ^2\,W^{-1}|^{1/2}}\text {exp} \left\{ -\frac{1}{2} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' \frac{1}{4 \sigma ^2} W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right\} . \end{aligned}$$

Now we will transform using integration by parts.

figure j

The first part is 0 because of the exponential decay of the density function of normal distribution. Now we will transform the second part. We will use the \({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}}\) formula and calculate the derivative of multiplication.

$$\begin{aligned}&\sum _{i=1}^p \idotsint 4 \sigma ^2 \dfrac{d}{\mathop {}\!d{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_i}({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}})_i f({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}) d {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_i d {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_1 \ldots d {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_p \\&= \sum _{i=1}^p \textrm{E}4 \sigma ^2 \dfrac{d}{\mathop {}\!d{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_i}({{\,\mathrm{{\hat{\beta }^U_{cJS}}}\,}})_i =\sum _{i=1}^p \textrm{E}4 \sigma ^2 \dfrac{d}{\mathop {}\!d{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}_i}\left( 1- \dfrac{(p-2)4 \sigma ^2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) ({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})_i \\&= \sum _{i=1}^p \bigg (4\sigma ^2 \textrm{E}\left( 1- \dfrac{(p-2) 4 \sigma ^2}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) + \textrm{E}\left[ 4 \sigma ^2 \left( \dfrac{(p-2)4 \sigma ^2}{({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^2}\right) 2(W)_{i \boldsymbol{\cdot }} {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})_i \right] \bigg ) \\&=4 \sigma ^2p - \textrm{E}\left( \dfrac{p(p-2) 4^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) + \textrm{E}\left[ 4 \sigma ^2 \left( \dfrac{(p-2)4 \sigma ^2}{({{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})^2}\right) 2 {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}\right] \\&=4 \sigma ^2p - \textrm{E}\left( \dfrac{p(p-2) 4^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) + \textrm{E}\left( \dfrac{2(p-2)4^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) \\&= 4 \sigma ^2p - \textrm{E}\left( \dfrac{p(p-2) 4^2 \sigma ^4-2(p-2)4^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}'W{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) = 4 \sigma ^2p - \textrm{E}\left( \dfrac{(p-2)^24^2 \sigma ^4}{{{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}' W {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}}}\right) \end{aligned}$$

Now we back to (11) and substitute obtained results of i .

figure m

The last inequality results from the fact that matrix W is positive semi-definite. Now we will prove the last thing:

$$\textrm{E}\left[ (\beta - {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})' X'X (\beta - {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})\right] \ge 4 \sigma ^2 p.$$

Using the same line of reasoning as in and assuming that \(\text {Tr} \{ W^{-1}X'X\} \ge p\) we obtain:

$$\textrm{E}\left[ (\beta - {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})' X'X (\beta - {{\,\mathrm{{\hat{\beta }^U_{c}}}\,}})\right] = \text {Tr} \left\{ 4 \sigma ^2\,W^{-1} X'X \right\} \ge 4 \sigma ^2p,$$

which ends the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grabarczyk, M., Rudaś, K. (2023). Shrinkage Estimators for Uplift Regression. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics