Skip to main content

Fault Detection in Wastewater Treatment Plants: Application of Autoencoders Models with Streaming Data

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Water is a fundamental human resource and its scarcity is reflected in social, economic and environmental problems. Water used in human activities must be treated before reusing or returning to nature. This treatment takes place in wastewater treatment plants (WWTPs), which need to perform their functions with high quality, low cost, and reduced environmental impact. This paper aims to identify failures in real-time, using streaming data to provide the necessary preventive actions to minimize damage to WWTPs, heavy fines and, ultimately, environmental hazards. Convolutional and Long short-term memory (LSTM) autoencoders (AEs) were used to identify failures in the functioning of the dissolved oxygen sensor used in WWTPs. Five faults were considered (drift, bias, precision degradation, spike and stuck) in three different scenarios with variations in the appearance order, intensity and duration of the faults. The best performance, considering different model configurations, was achieved by Convolutional-AE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haglund, W.D., Sorg, M.H.: Human remains in water environments. In: Advances in Forensic Taphonomy: Method, Theory, and Archaeological Perspectives, pp. 201–218 (2002)

    Google Scholar 

  2. Cassardo, C., Jones, J.A.A.: Managing water in a changing world. Water 3(2), 618–628 (2011)

    Article  Google Scholar 

  3. Mekonnen, M.M., Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2(2), e1500323 (2016)

    Article  Google Scholar 

  4. Macedo, H.E., et al.: Distribution and characteristics of wastewater treatment plants within the global river network. Earth Syst. Sci. Data 14(2), 559–577 (2022)

    Article  Google Scholar 

  5. Rosso, D., Stenstrom, M.K., Larson, L.E.: Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci. Technol. 57(7), 973–978 (2008)

    Article  Google Scholar 

  6. Nakkasunchi, S., Hewitt, N.J., Zoppi, C., Brandoni, C.: A review of energy optimization modelling tools for the decarbonisation of wastewater treatment plants. J. Clean. Prod. 279, 123811 (2021)

    Article  Google Scholar 

  7. Miron, M., Frangu, L., Caraman, S., Luca, L.: Artificial neural network approach for fault recognition in a wastewater treatment process. In: 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), pp. 634–639 (2018)

    Google Scholar 

  8. Mamandipoor, B., Majd, M., Sheikhalishahi, S., Modena, C., Osmani, V.: Monitoring and detecting faults in wastewater treatment plants using deep learning. Environ. Monit. Assess. 192(2), 1–12 (2020). https://doi.org/10.1007/s10661-020-8064-1

    Article  Google Scholar 

  9. Li, X., Chai, W., Liu, T., Qiao, J.: Fault detection of dissolved oxygen sensor in wastewater treatment plants. In: IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 225–230 (2020)

    Google Scholar 

  10. Xiao, H., Huang, D., Pan, Y., Liu, Y., Song, K.: Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemom. Intell. Lab. Syst. 161, 96–107 (2017)

    Article  Google Scholar 

  11. Wang, K., Chang, P., Meng, F.: Monitoring of wastewater treatment process based on slow feature analysis variational autoencoder. In: 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), pp. 495–502. IEEE (2021)

    Google Scholar 

  12. King, K.L., Wang, Z., Kroll, D.J.: Classification of deviations in a process, 14 February 2006. US Patent 6,999,898

    Google Scholar 

  13. Schraa, O., Tole, B., Copp, J.B.: Fault detection for control of wastewater treatment plants. Water Sci. Technol. 53(4–5), 375–382 (2006)

    Article  Google Scholar 

  14. Kazemi, P., Giralt, J., Bengoa, C., Masoumian, A., Steyer, J.-P.: Fault detection and diagnosis in water resource recovery facilities using incremental PCA. Water Sci. Technol. 82(12), 2711–2724 (2020)

    Article  Google Scholar 

  15. Wang, B., Li, Z., Dai, Z., Lawrence, N., Yan, X.: A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant. Appl. Soft Comput. 82, 105527 (2019)

    Article  Google Scholar 

  16. Newhart, K.B., Holloway, R.W., Hering, A.S., Cath, T.Y.: Data-driven performance analyses of wastewater treatment plants: A review. Water Res. 157, 498–513 (2019)

    Article  Google Scholar 

  17. Spellman, F.R.: Handbook of Water and Wastewater Treatment Plant Operations. CRC Press (2003)

    Google Scholar 

  18. Mendes, J., Araújo, R., Matias, T., Seco, R., Belchior, C.: Automatic extraction of the fuzzy control system by a hierarchical genetic algorithm. Eng. Appl. Artif. Intell. 29, 70–78 (2014)

    Article  Google Scholar 

  19. Jeppsson, U., et al.: Benchmark simulation model no 2: general protocol and exploratory case studies. Water Sci. Technol. 56(8), 67–78 (2007)

    Article  Google Scholar 

  20. Mendes, J., Sousa, N., Araújo, R.: Adaptive predictive control with recurrent fuzzy neural network for industrial processes. In: Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2011, Toulouse, France, 5–9 September 2011, pp. 1–8. IEEE (2011)

    Google Scholar 

  21. Mendes, J., Araújo, R., Matias, T., Seco, R., Belchior, C.: Evolutionary learning of a fuzzy controller for industrial processes. In: Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, IECON 2014, Dallas, TX, USA, 29 October–1 November 2014, pp. 139–145. IEEE (2014)

    Google Scholar 

  22. Jan, S.U., Lee, Y.D., Koo, I.S.: A distributed sensor-fault detection and diagnosis framework using machine learning. Inf. Sci. 547, 777–796 (2021)

    Article  Google Scholar 

  23. Jan, S.U., Koo, I.: A novel feature selection scheme and a diversified-input SVM-based classifier for sensor fault classification. J. Sensors. 2018 (2018)

    Google Scholar 

  24. Zidi, S., Moulahi, T., Alaya, B.: Fault detection in wireless sensor networks through SVM classifier. IEEE Sens. J. 18(1), 340–347 (2017)

    Article  Google Scholar 

  25. Li, F., Su, Z., Wang, G.: An effective dynamic immune optimization control for the wastewater treatment process. Environ. Sci. Pollut. Res. 29, 1–16 (2021). https://doi.org/10.1007/s11356-021-17505-3

    Article  Google Scholar 

  26. Pedrycz, W., Chen, S.-M. (eds.): Deep Learning: Concepts and Architectures. SCI, vol. 866. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31756-0

    Book  Google Scholar 

  27. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTM. In: International Conference on Machine Learning, pp. 843–852. PMLR (2015)

    Google Scholar 

  28. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the ERDF and national funds through the project SYNAPPS (CENTRO-01-0247-FEDER-046978). We also acknowledge the support of the EC project CHIST-ERA-19-XAI-012, and project CHIST-ERA/0004/2019 funded by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Salles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salles, R., Mendes, J., Ribeiro, R.P., Gama, J. (2023). Fault Detection in Wastewater Treatment Plants: Application of Autoencoders Models with Streaming Data. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1752. Springer, Cham. https://doi.org/10.1007/978-3-031-23618-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23618-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23617-4

  • Online ISBN: 978-3-031-23618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics