Abstract
Lung transplantation is a critical procedure performed in end-stage pulmonary patients. The number of lung transplantations performed in the USA in the last decade has been rising, but the survival rate is still lower than that of other solid organ transplantations. First, this study aims to employ machine learning models to predict patient survival after lung transplantation. Additionally, the aim is to generate counterfactual explanations based on these predictions to help clinicians and patients understand the changes needed to increase the probability of survival after the transplantation and better comply with normative requirements. We use data derived from the UNOS database, particularly the lung transplantations performed in the USA between 2019 and 2021. We formulate the problem and define two data representations, with the first being a representation that describes only the lung recipients and the second the recipients and donors. We propose an explainable ML workflow for predicting patient survival after lung transplantation. We evaluate the workflow based on various performance metrics, using five classification models and two counterfactual generation methods. Finally, we demonstrate the potential of explainable ML for resource allocation, predicting patient mortality, and generating explainable predictions for lung transplantation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Balch, J.A., et al.: Machine learning applications in solid organ transplantation and related complications. Front. Immunol. 3707 (2021). https://doi.org/10.3389/fimmu.2021.739728
Barbosa Jr, E.J.M., et al.: Machine learning algorithms utilizing quantitative CT features may predict eventual onset of bronchiolitis obliterans syndrome after lung transplantation. Acad. Radiol. 25(9), 1201ā1212 (2018). https://doi.org/10.1016/j.acra.2018.01.013
Berra, G., et al.: Association between the renin-angiotensin system and chronic lung allograft dysfunction. Eur. Respir. J. 58(4) (2021). https://doi.org/10.1183/13993003.02975-2020
Berrevoets, J., Alaa, A., Qian, Z., Jordon, J., Gimson, A.E.S., van der Schaar, M.: Learning queueing policies for organ transplantation allocation using interpretable counterfactual survival analysis. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 792ā802. PMLR (2021)
Cantu, E., et al.: Preprocurement in situ donor lung tissue gene expression classifies primary graft dysfunction risk. Am. J. Respir. Crit. Care Med. 202(7), 1046ā1048 (2020). https://doi.org/10.1164/rccm.201912-2436LE
Colvin, M., et al.: OPTN/SRTR 2019 annual data report: heart. Am. J. Transplant. 21(S2), 356ā440 (2021). https://doi.org/10.1111/ajt.16492
Connor, K.L., OāSullivan, E.D., Marson, L.P., Wigmore, S.J., Harrison, E.M.: The future role of machine learning in clinical transplantation. Transplantation 105(4), 723ā735 (2021). https://doi.org/10.1097/TP.0000000000003424
Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual explanations. In: BƤck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 448ā469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31
Davis, H., Glass, C., Davis, R., Glass, M., Pavlisko, E.: Detecting acute cellular rejection in lung transplant biopsies by artificial intelligence: a novel deep learning approach. J. Heart Lung Transplant. 39(4), S501āS502 (2020). https://doi.org/10.1016/j.healun.2020.01.100
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182ā197 (2002). https://doi.org/10.1109/4235.996017
DueƱas-Jurado, J., et al.: New models for donor-recipient matching in lung transplantations. PLoS ONE 16(6), e0252148 (2021). https://doi.org/10.1371/journal.pone.0252148
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a āright to explanationā. AI Mag. 38(3), 50ā57 (2017). https://doi.org/10.1609/aimag.v38i3.2741
Gottlieb, J.: Lung allocation. J. Thorac. Dis. 9(8), 2670 (2017). https://doi.org/10.21037/jtd.2017.07.83
Halloran, K., et al.: Molecular phenotyping of rejection-related changes in mucosal biopsies from lung transplants. Am. J. Transplant. 20(4), 954ā966 (2020). https://doi.org/10.1111/ajt.15685
Kwong, A.J., et al.: OPTN/SRTR 2019 annual data report: liver. Am. J. Transplant. 21(S2), 208ā315 (2021). https://doi.org/10.1111/ajt.16494
Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607ā617 (2020). https://doi.org/10.1145/3351095.3372850
Oztekin, A., Al-Ebbini, L., Sevkli, Z., Delen, D.: A decision analytic approach to predicting quality of life for lung transplant recipients: a hybrid genetic algorithms-based methodology. Eur. J. Oper. Res. 266(2), 639ā651 (2018). https://doi.org/10.1016/j.ejor.2017.09.034
Shahmoradi, L., Abtahi, H., Amini, S., Gholamzadeh, M.: Systematic review of using medical informatics in lung transplantation studies. Int. J. Med. Inform. 136, 104096 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104096
Spann, A., et al.: Applying machine learning in liver disease and transplantation: a comprehensive review. Hepatology 71(3), 1093ā1105 (2020). https://doi.org/10.1002/hep.31103
Valapour, M., et al.: OPTN/SRTR 2019 annual data report: lung. Am. J. Transplant. 21(S2), 441ā520 (2021). https://doi.org/10.1111/ajt.16495
Vitali, F.: A survey on methods and metrics for the assessment of explainability under the proposed AI act. In: Legal Knowledge and Information Systems: JURIX 2021: The Thirty-fourth Annual Conference, Vilnius, Lithuania, 8ā10 December 2021, vol. 346, p. 235. IOS Press (2022). https://doi.org/10.3233/FAIA210342
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. Law Technol. 31(2), 841 (2018)
Watson, D.S., et al.: Clinical applications of machine learning algorithms: beyond the black box. BMJ 364 (2019). https://doi.org/10.1136/bmj.l886
Xu, C., Alaa, A., Bica, I., Ershoff, B., Cannesson, M., van der Schaar, M.: Learning matching representations for individualized organ transplantation allocation. In: Banerjee, A., Fukumizu, K. (eds.) Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 130, pp. 2134ā2142. PMLR (2021)
Acknowledgements
This work was supported in part by the Health Resources and Services Administration contract 234-2005-370011C, the Digital Futures EXTREMUM project on āExplainable and Ethical Machine Learning for Knowledge Discovery from Medical Data Sourcesā, as well as by the Horizon2020 ASME project on āUsing Artificial Intelligence for Predicting the Treatment Outcome of Melanoma Patientsā.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rugolon, F., Bampa, M., Papapetrou, P. (2023). A Workflow for Generating Patient Counterfactuals in Lung Transplant Recipients. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-23633-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23632-7
Online ISBN: 978-3-031-23633-4
eBook Packages: Computer ScienceComputer Science (R0)