Skip to main content

Frequent Generalized Subgraph Mining via Graph Edit Distances

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

In this work, we propose a method for computing generalized frequent subgraph patterns which is based on the graph edit distance. Graph data is often equipped with semantic information in form of an ontology, for example when dealing with linked data or knowledge graphs. Previous work suggests to exploit this semantic information in order to compute frequent generalized patterns, i.e. patterns for which the total frequency of all more specific patterns exceeds the frequency threshold. However, the problem of computing the frequency of a generalized pattern has not yet been fully addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bause, F., Schubert, E., Kriege, N.M.: EmbAssi: embedding assignment costs for similarity search in large graph databases. Data Mining Knowl. Disc. 36, 1–28 (2022). https://doi.org/10.1007/s10618-022-00850-3

  2. Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L.: Comparing heuristics for graph edit distance computation. VLDB J. 29(1), 419–458 (2019). https://doi.org/10.1007/s00778-019-00544-1

    Article  Google Scholar 

  3. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: GEDLIB: A C++ library for graph edit distance computation. In: Conte, D., Ramel, J.-Y., Foggia, P. (eds.) GbRPR 2019. LNCS, vol. 11510, pp. 14–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20081-7_2

    Chapter  Google Scholar 

  4. Cakmak, A., Özsoyoglu, G.: Taxonomy-superimposed graph mining. In: International Conference on Extending Database Technology, ACM International Conference Proceeding Series, vol. 261, pp. 217–228. ACM (2008). https://doi.org/10.1145/1353343.1353372

  5. Debnath, A.K., de Compadre, R.L.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991). https://doi.org/10.1021/jm00106a046

  6. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17(8), 1036–1050 (2005). https://doi.org/10.1109/TKDE.2005.127

    Article  Google Scholar 

  7. Faci, A., Lesot, M.-J., Laudy, C.: cgSpan: Pattern mining in conceptual graphs. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12855, pp. 149–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87897-9_14

    Chapter  Google Scholar 

  8. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000–2001. Bioinformatics 17(1), 107–108 (2001). https://doi.org/10.1093/bioinformatics/17.1.107

    Article  Google Scholar 

  9. Holder, L.B., Cook, D.J., Djoko, S.: Substucture discovery in the SUBDUE system. In: AAAI Workshop on Knowledge Discovery in Databases, pp. 169–180. AAAI Press (1994)

    Google Scholar 

  10. Inokuchi, A.: Mining generalized substructures from a set of labeled graphs. In: IEEE International Conference on Data Mining, pp. 415–418. IEEE Computer Society (2004). https://doi.org/10.1109/ICDM.2004.10041

  11. Leal, W., Restrepo, G., Bernal, A.: A network study of chemical elements: from binary compounds to chemical trends. MATCH Commun. Math. Comput. Chem. 68, 417–442 (2012)

    Google Scholar 

  12. Martin, T., Fuentes, V., Valtchev, P., Diallo, A.B., Lacroix, R.: Generalized graph pattern discovery in linked data with data properties and a domain ontology. In: Symposium on Applied Computing, pp. 1890–1899. ACM (2022). https://doi.org/10.1145/3477314.3507301

  13. Morris, C., et al.: Tudataset: a collection of benchmark datasets for learning with graphs. In: ICML Workshop on Graph Representation Learning and Beyond (2020)

    Google Scholar 

  14. Petermann, A., Micale, G., Bergami, G., Pulvirenti, A., Rahm, E.: Mining and ranking of generalized multi-dimensional frequent subgraphs. In: International Conference on Digital Information Management, pp. 236–245. IEEE (2017). https://doi.org/10.1109/ICDIM.2017.8244685

  15. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Welke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palme, R., Welke, P. (2023). Frequent Generalized Subgraph Mining via Graph Edit Distances. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics