Skip to main content

Towards Data-Driven Volatility Modeling with Variational Autoencoders

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

In this study, we show how S &P 500 Index volatility surfaces can be modeled in a purely data-driven way using variational autoencoders. The approach autonomously learns concepts such as the volatility level, smile, and term structure without leaning on hypotheses from traditional volatility modeling techniques. In addition to introducing notable improvements to an existing variational autoencoder approach for the reconstruction of both complete and incomplete volatility surfaces, we showcase three practical use cases to highlight the relevance of this approach to the financial industry. First, we show how the latent space learned by the variational autoencoder can be used to produce synthetic yet realistic volatility surfaces. Second, we demonstrate how entire sequences of synthetic volatility surfaces can be generated to stress test and analyze an options portfolio. Third and last, we detect anomalous surfaces in our options dataset and pinpoint exactly which subareas are divergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Ackerer, D., Tagasovska, N., Vatter, T.: Deep smoothing of the implied volatility surface. Tech. rep., arXiv.org (2020)

    Google Scholar 

  3. Bergeron, M., Fung, N., Hull, J., Poulos, Z.: Variational Autoencoders: a hands-off approach to volatility. arXiv.org:2102.03945 (2021)

  4. Chataigner, M., Crépey, S., Dixon, M.: Deep local volatility. Risks 8(3) (2020). https://doi.org/10.3390/risks8030082

  5. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  6. Davis, J., Devos, L., Reyners, S., Schoutens, W.: Gradient boosting for quantitative finance. J. Comput. Finance 24(4), 1–40 (2021). https://doi.org/10.21314/JCF.2020.403

  7. Dupire, B.: Pricing with a smile. Risk Magazine, pp. 18–20 (1994)

    Google Scholar 

  8. Gatheral, J., Jacquier, A.: Arbitrage-free SVI volatility surfaces. Quant. Finance 14(1), 59–71 (2014). https://doi.org/10.1080/14697688.2013.819986

    Article  MATH  Google Scholar 

  9. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)

    Article  MATH  Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114

  11. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MATH  Google Scholar 

  12. Lucas, J., Tucker, G., Grosse, R.B., Norouzi, M.: Don’t blame the ELBO! a linear VAE perspective on posterior collapse. In: NeurIPS (2019)

    Google Scholar 

  13. Madan, D., Carr, P., Stanley, M., Chang, E.: The variance gamma process and option pricing. Rev. Finance 2 (1999). https://doi.org/10.1023/A:1009703431535

  14. Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., Welling, M.: Survae flows: surjections to bridge the gap between VAEs and flows. In: NeurIPS (2020)

    Google Scholar 

  15. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, pp. 1530–1538. ICML’15, JMLR.org (2015)

    Google Scholar 

  16. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NIPS (2015)

    Google Scholar 

  17. Wales, D., Doye, J.: Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. The Journal of Physical Chemistry A 101 (1998). https://doi.org/10.1021/jp970984n

  18. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997). https://doi.org/10.1145/279232.279236

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dierckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dierckx, T., Davis, J., Schoutens, W. (2023). Towards Data-Driven Volatility Modeling with Variational Autoencoders. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics