Skip to main content

Control of Robotic Manipulator Using Optimized Neural Networks

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1438))

Included in the following conference series:

  • 84 Accesses

Abstract

The control of a robotic manipulators is a complicated task due to its high model uncertainties and disturbances. In this research, we study two neural network architectures to control robotic manipulators. The first method consists of using an optimized PD controller combined with a multi-layer perceptron neural network (MLPNN). The second method relies on a combination of MLPNN and a feedforward radial basis function neural network (BBFNN) compensator. Heuristic methods such as genetic optimization and pattern search optimization are used to find the optimal weights for these architectures. Extensive simulations are conducted in MATLAB environment to evaluate the feasibility of the optimized neural controllers in trajectory tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ku, S., Salcudean, S.E.: Design and control of a teleoperated microgripper for microsurgery. In: 1996 Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, pp. 889–894 (1996)

    Google Scholar 

  2. Liu, Y., Xu, H., Geng, C., Chen, G.: A modular manipulator for industrial applications: design and implement. In: 2017 2nd International Conference on Robotics and Automation Engineering, Shanghai, China, pp. 331–335 (2017)

    Google Scholar 

  3. Tam, T.J., Yang, S.P.: Modeling and control for underwater robotic manipulators - an example. In: 1997 Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, pp. 2166–2171 (1997)

    Google Scholar 

  4. Wang, J., Mukherji, R., Ficocelli, M., Ogilvie, A., Liu, M., Rice, C.: Modeling and simulation of robotic system for servicing Hubble space telescope. In: 2006 Proceedings of IEEE International Conference on Intelligent Robots and Systems, Beijing, China, pp. 1026–1031

    Google Scholar 

  5. Shi, X., Duan, H.: Novel adaptive robust control for a class of uncertain nonlinear system. In: 2017 IEEE International Conference on Control and Automation, Guangzhou, China, pp. 3046–3050 (2017)

    Google Scholar 

  6. Liaw, H.C., Shirinzadeh, B., Smith, J.: Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans. Control Syst. Technol. 16, 826–833 (2018)

    Article  Google Scholar 

  7. Song, W., Liu, Y., Sun, L.: Model reference adaptive integral-type sliding mode control design for a class of uncertain systems. In: 2006 Proceedings of 6th World Congress on Intelligent Control and Automation, pp. 2056–2060 (2006)

    Google Scholar 

  8. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49, 1448–1458 (2019)

    Google Scholar 

  9. Nguyen, V.C., Vo, A.T., Kang, H.J.: A non-singular fast terminal sliding mode control based on third-order sliding mode observer for a class of second-order uncertain nonlinear systems and its application to robot manipulators. IEEE Access 8, 78109–78120 (2020)

    Article  Google Scholar 

  10. Melkote, H., Khorrami, F.: Nonlinear adaptive control of direct-drive brushless DC motors and applications to robotic manipulators. IEEE Trans. Mechatron. 4, 71–81 (1999)

    Article  Google Scholar 

  11. Wang, Z., Jiao, X., Lin, Z.: Sliding model active disturbance rejection control for tip trajectory tracking of spray-painting manipulator. In: 2019 Proceedings of 38th Chinese Control Conference, Guangzhou, China, pp. 4445–4449 (2019)

    Google Scholar 

  12. Saleki, A., Fateh, M.M.: Model free control of electrically driven manipulator by optimized linear extended state observer, based on voltage control strategy. In: Proceedings of International Conference on Robotics and Mechatronics, Tehran, Iran, pp. 548–553 (2018)

    Google Scholar 

  13. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57, 1411–1419 (2010)

    Article  Google Scholar 

  14. Lu, P., Sandy, T., Buchli, J.: Adaptive unscented kalman filter-based disturbance rejection with application to high precision hydraulic robotic control. In: 2019 IEEE International Conference on Intelligent Robots and Systems, Macau, China, pp. 4365–4372 (2019)

    Google Scholar 

  15. Cortesso, R., Millela, F., Nunes, U.: Joints robust position control using linear kalman filters. In: IEEE International Workshop on Advanced Motion Control, Coimbra, Portugal, pp. 417–422 (1998)

    Google Scholar 

  16. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47, 932–938 (2000)

    Article  Google Scholar 

  17. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE Trans. Mechatron. 9, 706–710 (2004)

    Article  Google Scholar 

  18. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: A nonlinear disturbance observer for two link robotic manipulators. In: 1999, Proceedings of 38th Conference on Decision and Control, Phoenix, Arizona USA, pp. 3410–3415 (1999)

    Google Scholar 

  19. Xiao, B., Yin, S., Kaynak, O.: Tracking control of robotic manipulators with uncertain kinematics and dynamics. IEEE Trans. Ind. Electron. 63, 6439–6449 (2016)

    Article  Google Scholar 

  20. Parlos, A.G., Menon, S.K., Atiya, A.F.: Adaptive state estimation using dynamic recurrent neural networks. In: 1999 Proceedings of Joint Conference on Neural Networks, Washington, DC, US, pp. 3361–3364 (1999)

    Google Scholar 

  21. Abdollahi, F., Talebi, H.A., Patel, R.V.: A Stable neural network-based observer with application to flexible-joint manipulators. IEEE Trans. Neural Networks 17, 118–129 (2006)

    Article  Google Scholar 

  22. Yi, S.Y., Chung, M.J.: A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE Trans. Syst. Man Cybern. 27, 706–713 (1997)

    Article  Google Scholar 

  23. Tang, W., Chen, G.: A robust fuzzy PI controller for a flexible-joint robot arm with uncertainties. In: 1994 Proceedings of IEEE 3rd International Conference on Fuzzy Systems, Orlando, FL, pp. 1554–1559 (1994)

    Google Scholar 

  24. Ghalia, M.B., Alouani, A.T.: A robust trajectory tracking control of industrial robot manipulators using fuzzy logic. In: Proceedings of 27th Southeastern Symposium on System Theory, Starkville, MS, USA, pp. 268–271 (1995)

    Google Scholar 

  25. Wei, L.X., Yang, L., Wang, H.R.: Adaptive neural network position/force control of robot manipulators with model uncertainties. In: 2005 International Conference on Neural Networks and Brain, Beijing, pp. 1825–1830 (2005)

    Google Scholar 

  26. Chen, Z., Huang, F., Sun, W., Gu, J.: RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE Trans. Mechatron. 25, 906–918 (2020)

    Article  Google Scholar 

  27. Er, M.J., Gao, Y.: Robust adaptive control of robot manipulators using generalized fuzzy neural networks. IEEE Trans. Ind. Electron. 50, 620–628 (2003)

    Article  Google Scholar 

  28. Ramirez, J.A., Cervantes, I., Bautista, R.: Robust PID control for robots manipulators with elastic joints. In: 2001 Proceedings of IEEE International Conference on Control Applications, Mexico City, Mexico, pp. 542–547 (2001)

    Google Scholar 

  29. Nguyen, V.T., Lin, C.Y., Su, S.F., Tran, Q.V.: Adaptive PID tracking control based radial basic function networks for a 2-DOF parallel manipulator. In: 2017 International Conference on System Science Engineering, Ho Chi Minh City, pp. 309–312 (2017)

    Google Scholar 

  30. Dash, K.K., Choudhury, B.B., Senapati, S.K.: Inverse kinematic solution of 6-DOF industrial robot using nero-fuzzy technology. Int. J. Comput. Syst. Eng. (IJCSYSE) 5(5/6), 333–341 (2019)

    Google Scholar 

  31. Katal, N., Narayan, S.: Optimal design of QFT controller for pneumatic servo actuator system using multi-objective genetic algorithm. Int. J. Adv. Intell. Paradigms (IJAIP) 15(2), 183–206 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Farooq .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section, we present the optimal weight values found using both GA and PS optimization techniques. These weights were used to generate plots in Figs. 3, 4, 5 and 6. First, we present the optimized weights for the MLPNN and RBFNN structure obtained through Pattern Search Optimization. Below, \({W}_{1}\), \({W}_{2}\) and \({W}_{3}\) represent the weights of the first, second and third layers of the MLPNN.

$$ W_{1} = \left[ {{ }\begin{array}{*{20}c} {0.8232} & {0.9082} & {0.5468} & {0.1151} \\ {0.9224} & {0.5511} & {0.8108} & {0.8661} \\ {0.3201} & {0.1294} & {0.8671} & {0.9371} \\ {8.666} & { - 31.69} & {0.2170} & {0.0875} \\ {0.0166} & {0.8803} & {0.1527} & {0.3348} \\ {0.7173} & {0.7197} & {0.9878} & {0.4286} \\ \end{array} } \right] $$
(15)
$${W}_{2}=\left[ \begin{array}{cccccc}-999.9& -991.3& -271.4& 64.852& 992.42& -999.5\\ -991.5& 524.71& 736.92& 32.567& 672.94& -995.2\\ 784.60& 592.83& -527.9& 0.6585& 152.42& 992.25\\ -999.2& -975.4& -999.8& -191.5& 672.26& -999.5\\ -159.8& 0.8352& 0.8150& 0.8735& -63.61& -31.38\\ -999.8& -895.2& 128.9& 64.704& 968.34& 896.93\end{array}\right]$$
(16)
$${W}_{3}=\left[\begin{array}{cccccc}0.7353& 0.8948& 0.0580& 0.2575& 64.2152& 0.0473\\ 0.6188& 0.5874& 0.6526& 0.1583& 0.6204& 32.909\end{array}\right]$$
(17)

Furthermore, below are the weights, \(W\), for the RBFNN feedforward compensator

$$W=\left[\begin{array}{ccccc}-31.28& -31.41& 0.5816& 4.7739& 60.381\\ 0.1527& -23.73& 0.8965& -15.61& 40.639\end{array}\right]$$
(18)

We now present the optimized weights for the MLPNN and RBFNN structure obtained through Genetic optimization.

$${W}_{1}=\left[ \begin{array}{cccc}1.1347& 0.3551& 0.1101& 2.2372\\ 0.7040& -333.0& 2.3326& 1.9993\\ -0.895& 0.1169& -0.673& 3.0550\\ 3.7088& 2.6820& 2.8896& 5.2755\\ -1.824& 1.8196& 0.6517& 5.5456\\ 9.4943& 0.9763& 7.2938& 1.9438\end{array}\right]$$
(19)
$${W}_{2}=\left[ \begin{array}{cccccc}2.6259& -0.037& 4.3940& -0.042& 6.3050& -1.732\\ 2.7672& 3.1037& 1.1907& 1.1604& 0.7309& -0.133\\ -0.313& 2.2784& 2.7038& 0.1689& 0.7936& -0.483\\ 1.5235& -0.356& 2.4446& 3.5017& 3.3051& 4.9447\\ 2.4453& 8.6390& 1.9880& 0.7086& 0.3127& -0.376\\ 1.4079& 4.4947& 0.9780& -981.6& 0.7767& 7.4287\end{array}\right]$$
(20)
$${W}_{3}=\left[\begin{array}{cccccc}12.411& 11.937& 7.5211& -1.321& 14.465& 13.024\\ -0.636& 2.5782& 9.5835& -0.4881& 5.6643& 4.3002\end{array}\right]$$
(21)
$$ W = 0.81400.1649\, - \,0.32444.579812.0884.09580.87991.46270.31721.9493 $$
(22)

The optimized gains and weights for the Optimized PD based MLPNN structure are presented below. We first however present the GA optimized gains of the PD controller. These were defined as:

$${K}_{p}=\left[\begin{array}{cc}999.99& 0\\ 0& 999.99\end{array}\right]$$
(23)
$${K}_{d}=\left[\begin{array}{cc}999.99& 0\\ 0& 78.831\end{array}\right]$$
(24)

After optimizing the weights of the MLPNN through Pattern Search, we define the weights as:

$${W}_{1}=\left[ \begin{array}{cccccc}0.1807& 320.43& 256.40& 768.54& 448.99& 384.99\\ 0.4670& 0.5316& -511.6& 0.6217& -895.5& -511.6\\ 256.01& 0.7113& 511.73& 128.98& -831.4& 0.9180\\ 0.4437& 8.3070& 512.42& -511.6& -511.8& -31.50\\ 0.5435& -127.1& 384.66& 256.71& -767.7& 768.63\\ 384.74& 0.7557& 512.21& -831.4& 508.71& 129.02\end{array}\right]$$
(25)
$${W}_{2}=\left[ \begin{array}{cccccc}0.8257& -511.4& 512.39& 0.6272& 2.3858& 0.2875\\ -1.029& -31.72& -511.6& -510.9& -127.6& 0.2799\\ -479.3& 0.3994& -831.1& 767.61& -767.2& 256.82\\ 16.635& 2.6768& 0.4891& 514.57& 128.83& 0.6162\\ 785.11& -255.5& 0.0273& 512.77& -511.2& 4.7337\\ 512.95& -255.5& -255.3& 0.6099& 768.53& 512.96\end{array}\right]$$
(26)
$${W}_{3}=\left[\begin{array}{cccccc}0.1872& -63.05& 0.0627& -63.27& 0.4994& 0.5504\\ 0.3976& 0.6116& -31.98& 0.0272& 32.935& 0.3487\end{array}\right]$$
(27)

Lastly, after optimizing the weights of the MLPNN through GA, we define the weights as

$${W}_{1}=\left[ \begin{array}{cccccc}11.592& 5.1311& 10.021& 7.5566& 8.8674& 4.0064\\ 18.683& 6.8669& 6.8806& -196.1& 3.4426& 9.0909\\ 10.856& 8.5683& 2.4906& 6.4596& 7.1922& 9.7623\\ 3.1292& -978.0& 607.00& 811.58& 2.1298& 7.8198\\ 10.132& 2.5871& 866.50& 6.9882& -665.0& 5.1821\\ 5.1810& -910.3& 3.6058& 6.6461& 10.246& 6.4873\end{array}\right]$$
(28)
$${W}_{2}=\left[ \begin{array}{cccccc}9.2022& 16.688& 10.638& 4.0545& 9.3059& 1.9572\\ 4.1124& 2.1079& 6.9696& -427.0& 6.8292& -258.4\\ 6.6159& 4.7703& 4.5035& 4.3297& -668.7& 6.2226\\ 7.4880& 9.3990& 6.4226& 3.5219& 6.2623& 3.8954\\ 2.0646& 935.25& 5.7603& 3.4023& 11.013& 4.9729\\ 5.3753& 10.508& 12.207& 2.9116& 2.9071& 6.1488\end{array}\right]$$
(29)
$${W}_{3}=\left[\begin{array}{cccccc}10.437& 19.237& 3.3755& 9.8932& 12.395& 8.1065\\ 6.3710& 10.664& 0.4080& 1.9125& 7.3250& -1.217\end{array}\right]$$
(30)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherfouh, K., Gu, J., Farooq, U., Asad, M.U., Qureshi, K.K. (2023). Control of Robotic Manipulator Using Optimized Neural Networks. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_2

Download citation

Publish with us

Policies and ethics